Comparative Assessment of Two Objective Forecast Models for Cases of Persistent Extreme Precipitation Events in the Yangtze–Huai River Valley in Summer 2016

Comparative Assessment of Two Objective Forecast Models for Cases of Persistent Extreme... AbstractTwo persistent extreme precipitation events (PEPEs) that caused severe flooding in the Yangtze–Huai River valley in summer 2016 presented a significant challenge to operational forecasters. To provide forecasters with useful references, the capacity of two objective forecast models in predicting these two PEPEs is investigated. The objective models include a numerical weather prediction (NWP) model from the European Centre for Medium-Range Weather Forecasts (ECMWF), and a statistical downscaling model, the Key Influential Systems Based Analog Model (KISAM). Results show that the ECMWF ensemble provides a skillful spectrum of solutions for determining the location of the daily heavy precipitation (≥25 mm day−1) during the PEPEs, despite its general underestimation of heavy precipitation. For lead times longer than 3 days, KISAM outperforms the ensemble mean and nearly one-half or more of all the ensemble members of ECMWF. Moreover, at longer lead times, KISAM generally performs better in reproducing the meridional location of accumulated rainfall over the two PEPEs compared to the ECMWF ensemble mean and the control run. Further verification of the vertical velocity that affects the production of heavy rainfall in ECMWF and KISAM implies the quality of the depiction of ascending motion during the PEPEs has a dominating influence on the models’ performance in predicting the meridional location of the PEPEs at all lead times. The superiority of KISAM indicates that statistical downscaling techniques are effective in alleviating the deficiency of global NWP models for PEPE forecasts in the medium range of 4–10 days. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Weather and Forecasting American Meteorological Society

Comparative Assessment of Two Objective Forecast Models for Cases of Persistent Extreme Precipitation Events in the Yangtze–Huai River Valley in Summer 2016

Loading next page...
 
/lp/ams/comparative-assessment-of-two-objective-forecast-models-for-cases-of-Grl2KT0KP8
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0434
D.O.I.
10.1175/WAF-D-17-0039.1
Publisher site
See Article on Publisher Site

Abstract

AbstractTwo persistent extreme precipitation events (PEPEs) that caused severe flooding in the Yangtze–Huai River valley in summer 2016 presented a significant challenge to operational forecasters. To provide forecasters with useful references, the capacity of two objective forecast models in predicting these two PEPEs is investigated. The objective models include a numerical weather prediction (NWP) model from the European Centre for Medium-Range Weather Forecasts (ECMWF), and a statistical downscaling model, the Key Influential Systems Based Analog Model (KISAM). Results show that the ECMWF ensemble provides a skillful spectrum of solutions for determining the location of the daily heavy precipitation (≥25 mm day−1) during the PEPEs, despite its general underestimation of heavy precipitation. For lead times longer than 3 days, KISAM outperforms the ensemble mean and nearly one-half or more of all the ensemble members of ECMWF. Moreover, at longer lead times, KISAM generally performs better in reproducing the meridional location of accumulated rainfall over the two PEPEs compared to the ECMWF ensemble mean and the control run. Further verification of the vertical velocity that affects the production of heavy rainfall in ECMWF and KISAM implies the quality of the depiction of ascending motion during the PEPEs has a dominating influence on the models’ performance in predicting the meridional location of the PEPEs at all lead times. The superiority of KISAM indicates that statistical downscaling techniques are effective in alleviating the deficiency of global NWP models for PEPE forecasts in the medium range of 4–10 days.

Journal

Weather and ForecastingAmerican Meteorological Society

Published: Feb 21, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial