Comment on “Rethinking the Lower Bound on Aerosol Radiative Forcing”

Comment on “Rethinking the Lower Bound on Aerosol Radiative Forcing” AbstractIn an influential and interesting study, Stevens (2015) suggested that the global and also Northern Hemispheric warming during the early industrial period implies that the effective radiative forcing by anthropogenic aerosols in the year 2000 compared to 1850 cannot be more negative than −1.0 W m−2. Here results from phase 5 of the Coupled Model Intercomparison Project are analyzed and it is shown that there is little relationship between and the warming trend in the early industrial period in comprehensive climate models. In particular, some models simulate a warming in the early industrial period despite a strong (very negative) . The reason for this difference in results is that the global-mean log-linear scaling of with anthropogenic sulfur dioxide emissions introduced and used by Stevens tends to produce a substantially larger aerosol forcing compared to climate models in the first half of the twentieth century, when SO2 emissions were concentrated over smaller regions. In turn, it shows smaller (less negative) in the recent period with comparatively more widespread SO2 emissions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Comment on “Rethinking the Lower Bound on Aerosol Radiative Forcing”

Loading next page...
 
/lp/ams/comment-on-rethinking-the-lower-bound-on-aerosol-radiative-forcing-fI0FG36s8R
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-16-0668.1
Publisher site
See Article on Publisher Site

Abstract

AbstractIn an influential and interesting study, Stevens (2015) suggested that the global and also Northern Hemispheric warming during the early industrial period implies that the effective radiative forcing by anthropogenic aerosols in the year 2000 compared to 1850 cannot be more negative than −1.0 W m−2. Here results from phase 5 of the Coupled Model Intercomparison Project are analyzed and it is shown that there is little relationship between and the warming trend in the early industrial period in comprehensive climate models. In particular, some models simulate a warming in the early industrial period despite a strong (very negative) . The reason for this difference in results is that the global-mean log-linear scaling of with anthropogenic sulfur dioxide emissions introduced and used by Stevens tends to produce a substantially larger aerosol forcing compared to climate models in the first half of the twentieth century, when SO2 emissions were concentrated over smaller regions. In turn, it shows smaller (less negative) in the recent period with comparatively more widespread SO2 emissions.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Aug 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off