Combined Effect of ENSO-Like and Atlantic Multidecadal Oscillation SSTAs on the Interannual Variability of the East Asian Winter Monsoon

Combined Effect of ENSO-Like and Atlantic Multidecadal Oscillation SSTAs on the Interannual... AbstractUsing long-term observational data and numerical model experiments, this study found that the Atlantic multidecadal oscillation (AMO) affects the influence of ENSO-like sea surface temperature anomalies (SSTAs, which contain the variability of both El Niño–Southern Oscillation and Pacific decadal oscillation) on the interannual change in the East Asian winter monsoon (EAWM). In the observations, the out-of-phase relationship between the variations in ENSO and the EAWM was significantly intensified when the AMO and ENSO-like SSTAs were in phase. Warmer-than-normal winters occurred across East Asia when the ENSO-like SSTAs and AMO were positively in phase, with a significantly weakened Siberian high and anomalous anticyclones over the western North Pacific. The opposite patterns occurred under negative in-phase conditions. In contrast, when the ENSO-like and AMO SSTAs were out of phase, the anomalies related to the EAWM tended to exhibit relatively weaker features. Numerical model experiments confirmed these observational results. When the models were perturbed with warm ENSO-like SSTAs and warm AMO SSTAs, the atmosphere showed a weakened Siberian high, strong anticyclonic anomalies over the Philippine Sea, a weakened East Asian trough, and dominant positive temperature anomalies over East Asia, implying a weaker EAWM. Reverse responses to negative in-phase temperature anomalies were observed. However, the atmospheric signals that responded to the out-of-phase conditions were less robust. This phenomenon may be attributed to the superposition of the interannual variability of the EAWM caused by ENSO-like SSTAs upon the influence of AMO on background Eurasian climate and the Walker circulation response to the heating source provided by the AMO, which induced changes in ENSO-like variability through the surface wind anomalies and modulated the anomalous anticyclone/cyclone over the Philippine Sea in warm–cold ENSO-like events. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Combined Effect of ENSO-Like and Atlantic Multidecadal Oscillation SSTAs on the Interannual Variability of the East Asian Winter Monsoon

Loading next page...
 
/lp/ams/combined-effect-of-enso-like-and-atlantic-multidecadal-oscillation-hXJs86cSuR
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
eISSN
1520-0442
D.O.I.
10.1175/JCLI-D-16-0118.1
Publisher site
See Article on Publisher Site

Abstract

AbstractUsing long-term observational data and numerical model experiments, this study found that the Atlantic multidecadal oscillation (AMO) affects the influence of ENSO-like sea surface temperature anomalies (SSTAs, which contain the variability of both El Niño–Southern Oscillation and Pacific decadal oscillation) on the interannual change in the East Asian winter monsoon (EAWM). In the observations, the out-of-phase relationship between the variations in ENSO and the EAWM was significantly intensified when the AMO and ENSO-like SSTAs were in phase. Warmer-than-normal winters occurred across East Asia when the ENSO-like SSTAs and AMO were positively in phase, with a significantly weakened Siberian high and anomalous anticyclones over the western North Pacific. The opposite patterns occurred under negative in-phase conditions. In contrast, when the ENSO-like and AMO SSTAs were out of phase, the anomalies related to the EAWM tended to exhibit relatively weaker features. Numerical model experiments confirmed these observational results. When the models were perturbed with warm ENSO-like SSTAs and warm AMO SSTAs, the atmosphere showed a weakened Siberian high, strong anticyclonic anomalies over the Philippine Sea, a weakened East Asian trough, and dominant positive temperature anomalies over East Asia, implying a weaker EAWM. Reverse responses to negative in-phase temperature anomalies were observed. However, the atmospheric signals that responded to the out-of-phase conditions were less robust. This phenomenon may be attributed to the superposition of the interannual variability of the EAWM caused by ENSO-like SSTAs upon the influence of AMO on background Eurasian climate and the Walker circulation response to the heating source provided by the AMO, which induced changes in ENSO-like variability through the surface wind anomalies and modulated the anomalous anticyclone/cyclone over the Philippine Sea in warm–cold ENSO-like events.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Apr 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off