Collaboration of the Weather and Climate Communities to Advance Subseasonal-to-Seasonal Prediction

Collaboration of the Weather and Climate Communities to Advance Subseasonal-to-Seasonal Prediction The World Weather Research Programme (WWRP) and the World Climate Research Programme (WCRP) have identified collaborations and scientific priorities to accelerate advances in analysis and prediction at subseasonalto-seasonal time scales, which include i) advancing knowledge of mesoscaleplanetary-scale interactions and their prediction; ii) developing high-resolution globalregional climate simulations, with advanced representation of physical processes, to improve the predictive skill of subseasonal and seasonal variability of high-impact events, such as seasonal droughts and floods, blocking, and tropical and extratropical cyclones; iii) contributing to the improvement of data assimilation methods for monitoring and predicting used in coupled oceanatmosphereland and Earth system models; and iv) developing and transferring diagnostic and prognostic information tailored to socioeconomic decision making. The document puts forward specific underpinning research, linkage, and requirements necessary to achieve the goals of the proposed collaboration. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Loading next page...
 
/lp/ams/collaboration-of-the-weather-and-climate-communities-to-advance-h03A3fiAZB
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/2010BAMS3013.1
Publisher site
See Article on Publisher Site

Abstract

The World Weather Research Programme (WWRP) and the World Climate Research Programme (WCRP) have identified collaborations and scientific priorities to accelerate advances in analysis and prediction at subseasonalto-seasonal time scales, which include i) advancing knowledge of mesoscaleplanetary-scale interactions and their prediction; ii) developing high-resolution globalregional climate simulations, with advanced representation of physical processes, to improve the predictive skill of subseasonal and seasonal variability of high-impact events, such as seasonal droughts and floods, blocking, and tropical and extratropical cyclones; iii) contributing to the improvement of data assimilation methods for monitoring and predicting used in coupled oceanatmosphereland and Earth system models; and iv) developing and transferring diagnostic and prognostic information tailored to socioeconomic decision making. The document puts forward specific underpinning research, linkage, and requirements necessary to achieve the goals of the proposed collaboration.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Oct 11, 2010

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off