Coastal Meteorology and Oceanography: Report of the Third Prospectus Development Team of the U.S. Weather Research Program to NOAA and NSF

Coastal Meteorology and Oceanography: Report of the Third Prospectus Development Team of the U.S.... U.S. Weather Research Program (USWRP) prospectus development teams (PDTs) are small groups of scientists that are convened by the USWRP lead scientist on a one-time basis to discuss critical issues and to provide advice related to future directions of the program. PDTs are a principal source of information for the Science Advisory Committee, which is a standing committee charged with the duty of making recommendations to the Program Office based upon overall program objectives. PDT-1 focused on theoretical issues, and PDT-2 on observational issues; PDT-3 is the first of several to focus on more specialized topics. PDT-3 was convened to identify forecasting problems related to U.S. coastal weather and oceanic conditions, and to suggest likely solution strategies.There were several overriding themes that emerged from the discussion. First, the lack of data in and over critical regions of the ocean, particularly in the atmospheric boundary layer, and the upper-ocean mixed layer were identified as major impediments to coastal weather prediction. Strategies for data collection and dissemination, as well as new instrument implementation, were discussed. Second, fundamental knowledge of airsea fluxes and boundary layer structure in situations where there is significant mesoscale variability in the atmosphere and ocean is needed. Companion field studies and numerical prediction experiments were discussed. Third, research prognostic models suggest that future operational forecast models pertaining to coastal weather will be high resolution and site specific, and will properly treat effects of local coastal geography, orography, and ocean state. The view was expressed that the exploration of coupled air-sea models of the coastal zone would be a particularly fruitful area of research. PDT-3 felt that forecasts of land-impacting tropical cyclones, Great Lakes-affected weather, and coastal cyclogenesis, in particular, would benefit from such coordinated modeling and field efforts. Fourth, forecasting for Arctic coastal zones is limited by our understanding of how sea ice forms. The importance of understanding air-sea fluxes and boundary layers in the presence of ice formation was discussed. Finally, coastal flash flood forecasting via hydrologic models is limited by the present accuracy of measured and predicted precipitation and storm surge events. Strategies for better ways to improve the latter were discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Loading next page...
 
/lp/ams/coastal-meteorology-and-oceanography-report-of-the-third-prospectus-sjCcUTSmw8
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477-77.7.1578
Publisher site
See Article on Publisher Site

Abstract

U.S. Weather Research Program (USWRP) prospectus development teams (PDTs) are small groups of scientists that are convened by the USWRP lead scientist on a one-time basis to discuss critical issues and to provide advice related to future directions of the program. PDTs are a principal source of information for the Science Advisory Committee, which is a standing committee charged with the duty of making recommendations to the Program Office based upon overall program objectives. PDT-1 focused on theoretical issues, and PDT-2 on observational issues; PDT-3 is the first of several to focus on more specialized topics. PDT-3 was convened to identify forecasting problems related to U.S. coastal weather and oceanic conditions, and to suggest likely solution strategies.There were several overriding themes that emerged from the discussion. First, the lack of data in and over critical regions of the ocean, particularly in the atmospheric boundary layer, and the upper-ocean mixed layer were identified as major impediments to coastal weather prediction. Strategies for data collection and dissemination, as well as new instrument implementation, were discussed. Second, fundamental knowledge of airsea fluxes and boundary layer structure in situations where there is significant mesoscale variability in the atmosphere and ocean is needed. Companion field studies and numerical prediction experiments were discussed. Third, research prognostic models suggest that future operational forecast models pertaining to coastal weather will be high resolution and site specific, and will properly treat effects of local coastal geography, orography, and ocean state. The view was expressed that the exploration of coupled air-sea models of the coastal zone would be a particularly fruitful area of research. PDT-3 felt that forecasts of land-impacting tropical cyclones, Great Lakes-affected weather, and coastal cyclogenesis, in particular, would benefit from such coordinated modeling and field efforts. Fourth, forecasting for Arctic coastal zones is limited by our understanding of how sea ice forms. The importance of understanding air-sea fluxes and boundary layers in the presence of ice formation was discussed. Finally, coastal flash flood forecasting via hydrologic models is limited by the present accuracy of measured and predicted precipitation and storm surge events. Strategies for better ways to improve the latter were discussed.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Jul 18, 1996

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off