Cloud Tracking with Satellite Imagery: From the Pioneering Work of Ted Fujita to the Present

Cloud Tracking with Satellite Imagery: From the Pioneering Work of Ted Fujita to the Present Tetsuya (Ted) Fujita was a pioneer in remote sensing of atmospheric motion. When meteorological satellites were introduced, he developed techniques for precise analysis of satellite measurements (sequences of images from polar orbiting platforms first and then from geostationary platforms). Soon after his initial work, the ability to track clouds and relate them to flow patterns in the atmosphere was transferred into routine operations at the national forecast centers. Cloud motion vectors derived from geostationary satellite imagery have evolved into an important data source of meteorological information, especially over the oceans. The current National Environmental Satellite, Data, and Information Service operational production of Geostationary Operational Environmental Satellite cloud and water vapor motion winds continues to perform well; rms differences with respect to raob's are found to be 6.57.5 m s1 http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Cloud Tracking with Satellite Imagery: From the Pioneering Work of Ted Fujita to the Present

Loading next page...
 
/lp/ams/cloud-tracking-with-satellite-imagery-from-the-pioneering-work-of-ted-J7r0c9B1Lx
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(2001)082<0033:CTWSIF>2.3.CO;2
Publisher site
See Article on Publisher Site

Abstract

Tetsuya (Ted) Fujita was a pioneer in remote sensing of atmospheric motion. When meteorological satellites were introduced, he developed techniques for precise analysis of satellite measurements (sequences of images from polar orbiting platforms first and then from geostationary platforms). Soon after his initial work, the ability to track clouds and relate them to flow patterns in the atmosphere was transferred into routine operations at the national forecast centers. Cloud motion vectors derived from geostationary satellite imagery have evolved into an important data source of meteorological information, especially over the oceans. The current National Environmental Satellite, Data, and Information Service operational production of Geostationary Operational Environmental Satellite cloud and water vapor motion winds continues to perform well; rms differences with respect to raob's are found to be 6.57.5 m s1

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Jan 22, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial