Cloud Tracking with Satellite Imagery: From the Pioneering Work of Ted Fujita to the Present

Cloud Tracking with Satellite Imagery: From the Pioneering Work of Ted Fujita to the Present Tetsuya (Ted) Fujita was a pioneer in remote sensing of atmospheric motion. When meteorological satellites were introduced, he developed techniques for precise analysis of satellite measurements (sequences of images from polar orbiting platforms first and then from geostationary platforms). Soon after his initial work, the ability to track clouds and relate them to flow patterns in the atmosphere was transferred into routine operations at the national forecast centers. Cloud motion vectors derived from geostationary satellite imagery have evolved into an important data source of meteorological information, especially over the oceans. The current National Environmental Satellite, Data, and Information Service operational production of Geostationary Operational Environmental Satellite cloud and water vapor motion winds continues to perform well; rms differences with respect to raob's are found to be 6.57.5 m s1 http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Cloud Tracking with Satellite Imagery: From the Pioneering Work of Ted Fujita to the Present

Loading next page...
 
/lp/ams/cloud-tracking-with-satellite-imagery-from-the-pioneering-work-of-ted-J7r0c9B1Lx
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(2001)082<0033:CTWSIF>2.3.CO;2
Publisher site
See Article on Publisher Site

Abstract

Tetsuya (Ted) Fujita was a pioneer in remote sensing of atmospheric motion. When meteorological satellites were introduced, he developed techniques for precise analysis of satellite measurements (sequences of images from polar orbiting platforms first and then from geostationary platforms). Soon after his initial work, the ability to track clouds and relate them to flow patterns in the atmosphere was transferred into routine operations at the national forecast centers. Cloud motion vectors derived from geostationary satellite imagery have evolved into an important data source of meteorological information, especially over the oceans. The current National Environmental Satellite, Data, and Information Service operational production of Geostationary Operational Environmental Satellite cloud and water vapor motion winds continues to perform well; rms differences with respect to raob's are found to be 6.57.5 m s1

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Jan 22, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off