Cloud-assisted retrieval of lower stratospheric water vapor from nadir view satellite measurements

Cloud-assisted retrieval of lower stratospheric water vapor from nadir view satellite measurements AbstractThis study examines the feasibility of retrieving lower stratospheric water vapor using a nadir infrared hyperspectrometer, with the focus on the detectability of small-scale water vapor variability. The feasibility of the retrieval is examined using simulation experiments that model different instrument settings. These experiments show that the infrared spectra, measured with sufficient spectral coverage, resolution and noise level, contain considerable information content that can be used to retrieve lower stratospheric water vapor. Interestingly, it is found that the presence of an opaque cloud layer at the tropopause level can substantially improve the retrieval performance, as it helps remove the degeneracy in the retrieval problem. Under this condition, elevated lower stratospheric water vapor concentration, for instance, caused by convective moistening, can be detected with an accuracy of 0.09 g/m2 using improved space-born hyperspectrometers. The cloud-assisted retrieval is tested using the measurements of the Atmospheric Infrared Sounder (AIRS). Validation against collocated aircraft data shows that the retrieval can detect the elevated water vapor concentration due to convective moistening. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Atmospheric and Oceanic Technology American Meteorological Society

Cloud-assisted retrieval of lower stratospheric water vapor from nadir view satellite measurements

Loading next page...
 
/lp/ams/cloud-assisted-retrieval-of-lower-stratospheric-water-vapor-from-nadir-eH5N8oANNC
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0426
D.O.I.
10.1175/JTECH-D-17-0132.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis study examines the feasibility of retrieving lower stratospheric water vapor using a nadir infrared hyperspectrometer, with the focus on the detectability of small-scale water vapor variability. The feasibility of the retrieval is examined using simulation experiments that model different instrument settings. These experiments show that the infrared spectra, measured with sufficient spectral coverage, resolution and noise level, contain considerable information content that can be used to retrieve lower stratospheric water vapor. Interestingly, it is found that the presence of an opaque cloud layer at the tropopause level can substantially improve the retrieval performance, as it helps remove the degeneracy in the retrieval problem. Under this condition, elevated lower stratospheric water vapor concentration, for instance, caused by convective moistening, can be detected with an accuracy of 0.09 g/m2 using improved space-born hyperspectrometers. The cloud-assisted retrieval is tested using the measurements of the Atmospheric Infrared Sounder (AIRS). Validation against collocated aircraft data shows that the retrieval can detect the elevated water vapor concentration due to convective moistening.

Journal

Journal of Atmospheric and Oceanic TechnologyAmerican Meteorological Society

Published: Jan 8, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial