Cloud-Assisted Retrieval of Lower-Stratospheric Water Vapor from Nadir-View Satellite Measurements

Cloud-Assisted Retrieval of Lower-Stratospheric Water Vapor from Nadir-View Satellite Measurements AbstractThis study examines the feasibility of retrieving lower-stratospheric water vapor using a nadir infrared hyperspectrometer, with the focus on the detectability of small-scale water vapor variability. The feasibility of the retrieval is examined using simulation experiments that model different instrument settings. These experiments show that the infrared spectra, measured with sufficient spectral coverage, resolution, and noise level, contain considerable information content that can be used to retrieve lower-stratospheric water vapor. Interestingly, it is found that the presence of an opaque cloud layer at the tropopause level can substantially improve the retrieval performance, as it helps remove the degeneracy in the retrieval problem. Under this condition, elevated lower-stratospheric water vapor concentration—for instance, caused by convective moistening—can be detected with an accuracy of 0.09 g m−2 using improved spaceborne hyperspectrometers. The cloud-assisted retrieval is tested using the measurements of the Atmospheric Infrared Sounder (AIRS). Validation against collocated aircraft data shows that the retrieval can detect the elevated water vapor concentration caused by convective moistening. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Atmospheric and Oceanic Technology American Meteorological Society

Cloud-Assisted Retrieval of Lower-Stratospheric Water Vapor from Nadir-View Satellite Measurements

Loading next page...
 
/lp/ams/cloud-assisted-retrieval-of-lower-stratospheric-water-vapor-from-nadir-eH5N8oANNC
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0426
D.O.I.
10.1175/JTECH-D-17-0132.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis study examines the feasibility of retrieving lower-stratospheric water vapor using a nadir infrared hyperspectrometer, with the focus on the detectability of small-scale water vapor variability. The feasibility of the retrieval is examined using simulation experiments that model different instrument settings. These experiments show that the infrared spectra, measured with sufficient spectral coverage, resolution, and noise level, contain considerable information content that can be used to retrieve lower-stratospheric water vapor. Interestingly, it is found that the presence of an opaque cloud layer at the tropopause level can substantially improve the retrieval performance, as it helps remove the degeneracy in the retrieval problem. Under this condition, elevated lower-stratospheric water vapor concentration—for instance, caused by convective moistening—can be detected with an accuracy of 0.09 g m−2 using improved spaceborne hyperspectrometers. The cloud-assisted retrieval is tested using the measurements of the Atmospheric Infrared Sounder (AIRS). Validation against collocated aircraft data shows that the retrieval can detect the elevated water vapor concentration caused by convective moistening.

Journal

Journal of Atmospheric and Oceanic TechnologyAmerican Meteorological Society

Published: Mar 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off