Classification of Australian Thunderstorms Using Multivariate Analyses of Large-Scale Atmospheric Variables

Classification of Australian Thunderstorms Using Multivariate Analyses of Large-Scale Atmospheric... AbstractLightning accompanied by inconsequential rainfall (i.e., “dry” lightning) is the primary natural ignition source for wildfires globally. This paper presents a machine-learning and statistical-classification analysis of dry and “wet” thunderstorm days in relation to associated atmospheric conditions. The study is based on daily data for lightning-flash count and precipitation from ground-based sensors and gauges and a comprehensive set of atmospheric variables that are based on ERA-Interim for the period from 2004 to 2013 at six locations in Australia. These locations represent a wide range of climatic zones (temperate, subtropical, and tropical). Quadratic surface representations and low-dimensional summary statistics were used to characterize the main features of the atmospheric fields. Four prediction skill scores were considered, and 10-fold cross validation was used to evaluate the performance of each classifier. The results were compared with those obtained by adopting the approach used in an earlier study for the U.S. Pacific Northwest. It was found that both approaches have prediction skill when tested against independent data, that mean atmospheric field quantities proved to be the most influential variables in determining dry-lightning activity, and that no single classifier or set of atmospheric variables proved to be consistently superior to its counterpart for the six sites examined here. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Meteorology and Climatology American Meteorological Society

Classification of Australian Thunderstorms Using Multivariate Analyses of Large-Scale Atmospheric Variables

Loading next page...
 
/lp/ams/classification-of-australian-thunderstorms-using-multivariate-analyses-vHqhr8Vu4z
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1558-8432
eISSN
1558-8432
D.O.I.
10.1175/JAMC-D-16-0271.1
Publisher site
See Article on Publisher Site

Abstract

AbstractLightning accompanied by inconsequential rainfall (i.e., “dry” lightning) is the primary natural ignition source for wildfires globally. This paper presents a machine-learning and statistical-classification analysis of dry and “wet” thunderstorm days in relation to associated atmospheric conditions. The study is based on daily data for lightning-flash count and precipitation from ground-based sensors and gauges and a comprehensive set of atmospheric variables that are based on ERA-Interim for the period from 2004 to 2013 at six locations in Australia. These locations represent a wide range of climatic zones (temperate, subtropical, and tropical). Quadratic surface representations and low-dimensional summary statistics were used to characterize the main features of the atmospheric fields. Four prediction skill scores were considered, and 10-fold cross validation was used to evaluate the performance of each classifier. The results were compared with those obtained by adopting the approach used in an earlier study for the U.S. Pacific Northwest. It was found that both approaches have prediction skill when tested against independent data, that mean atmospheric field quantities proved to be the most influential variables in determining dry-lightning activity, and that no single classifier or set of atmospheric variables proved to be consistently superior to its counterpart for the six sites examined here.

Journal

Journal of Applied Meteorology and ClimatologyAmerican Meteorological Society

Published: Jul 9, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off