Choice of South Asian Summer Monsoon Indices

Choice of South Asian Summer Monsoon Indices In the south Asian region, two of the major precipitation maxima associated with areas of intensive convective activity are located near the Bay of Bengal and in the vicinity of the Philippines. The variations of monthly mean outgoing longwave radiation in the two regions are poorly correlated, particularly in the decade of 1980s. The enhanced convection over the Bay of Bengal and Indian subcontinents is coupled with reinforced monsoon circulation west of 80E over India, the western Indian Ocean, and the tropical northern Africa. In contrast, the enhanced convection in the vicinity of the Philippines corresponds to intensified monsoon circulation primarily east of 80E over southeast Asia including the Indochina peninsula, South China Sea, Philippine Sea, and the Maritime Continent. To better reflect regional monsoon characteristics, two convection indices (or associated circulation indices that are dynamically coherent with the convection indices) are suggested to measure the variability of the Indian summer monsoon (ISM) and the southeast Asian summer monsoon, respectively.The change in the Bay of Bengal convection (the ISM) has planetary-scale implications, whereas the change in Philippine convection has primarily a regional impact including a linkage with the east Asia subtropical monsoon. The equatorial western Pacific winds exhibit a considerably higher correlation with the ISM convection than with the Philippine convection. During the summers when a major Pacific warm episode occurs (e.g., 198283, 198687, 199192, and 1997), the convection and circulation indices describing the ISM often diverge considerably, causing inconsistency among various normally coherent monsoon indices. This poses a primary difficulty for using a single monsoon index to characterize the interannual variability of a regional monsoon. The cause of the breakdown of the coherence between various convection and circulation indices during ENSO warm phase needs to be understood. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Choice of South Asian Summer Monsoon Indices

Loading next page...
 
/lp/ams/choice-of-south-asian-summer-monsoon-indices-HgQ0Mx7Dy8
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

In the south Asian region, two of the major precipitation maxima associated with areas of intensive convective activity are located near the Bay of Bengal and in the vicinity of the Philippines. The variations of monthly mean outgoing longwave radiation in the two regions are poorly correlated, particularly in the decade of 1980s. The enhanced convection over the Bay of Bengal and Indian subcontinents is coupled with reinforced monsoon circulation west of 80E over India, the western Indian Ocean, and the tropical northern Africa. In contrast, the enhanced convection in the vicinity of the Philippines corresponds to intensified monsoon circulation primarily east of 80E over southeast Asia including the Indochina peninsula, South China Sea, Philippine Sea, and the Maritime Continent. To better reflect regional monsoon characteristics, two convection indices (or associated circulation indices that are dynamically coherent with the convection indices) are suggested to measure the variability of the Indian summer monsoon (ISM) and the southeast Asian summer monsoon, respectively.The change in the Bay of Bengal convection (the ISM) has planetary-scale implications, whereas the change in Philippine convection has primarily a regional impact including a linkage with the east Asia subtropical monsoon. The equatorial western Pacific winds exhibit a considerably higher correlation with the ISM convection than with the Philippine convection. During the summers when a major Pacific warm episode occurs (e.g., 198283, 198687, 199192, and 1997), the convection and circulation indices describing the ISM often diverge considerably, causing inconsistency among various normally coherent monsoon indices. This poses a primary difficulty for using a single monsoon index to characterize the interannual variability of a regional monsoon. The cause of the breakdown of the coherence between various convection and circulation indices during ENSO warm phase needs to be understood.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Apr 16, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial