Characteristics of the TOVS Pathfinder Path-B Dataset

Characteristics of the TOVS Pathfinder Path-B Dataset From 1979 to present, sensors aboard the NOAA series of polar meteorological satellites have provided continuous measurements of the earth's surface and atmosphere. One of these sensors, the TIROS-N Operational Vertical Sounder (TOVS), observes earth-emitted radiation in 27 wavelength bands within the infrared and microwave portions of the spectrum, thereby creating a valuable resource for studying the climate of our planet. The NOAANASA Pathfinder program was conceived to make these data more readily accessible to the community in the form of processed geophysical variables. The Atmospheric Radiation Analysis group at the Laboratoire de Mtorologie Dynamique of the Centre National de la Recherche Scientifique of France was selected to process TOVS data into climate products (Path-B). The Improved Initialization Inversion (3I) retrieval algorithm is used to compute these products from the satellite-observed radiances. The processing technique ensures internal coherence and minimizes both observational and computational biases. Products are at a 1 1 latitudelongitude grid and include atmospheric temperature profiles (up to 10 hPa); total precipitable water vapor and content above four levels up to 300 hPa; surface skin temperature; and cloud properties (amount, type, and cloud-top pressure and temperature). The information is archived as 1-day, 5-day, and monthly means on the entire globe; a.m. and p.m. products for each satellite are stored separately. Eight years have been processed to date, and processing continues at the rate of approximately two satellite-months per day of computer time. Quality assessment studies are presented. They consist of comparisons to conventional meteorological data and to other remote sensing datasets. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Loading next page...
 
/lp/ams/characteristics-of-the-tovs-pathfinder-path-b-dataset-RgT3h0HFrE
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(1999)080<2679:COTTPP>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

From 1979 to present, sensors aboard the NOAA series of polar meteorological satellites have provided continuous measurements of the earth's surface and atmosphere. One of these sensors, the TIROS-N Operational Vertical Sounder (TOVS), observes earth-emitted radiation in 27 wavelength bands within the infrared and microwave portions of the spectrum, thereby creating a valuable resource for studying the climate of our planet. The NOAANASA Pathfinder program was conceived to make these data more readily accessible to the community in the form of processed geophysical variables. The Atmospheric Radiation Analysis group at the Laboratoire de Mtorologie Dynamique of the Centre National de la Recherche Scientifique of France was selected to process TOVS data into climate products (Path-B). The Improved Initialization Inversion (3I) retrieval algorithm is used to compute these products from the satellite-observed radiances. The processing technique ensures internal coherence and minimizes both observational and computational biases. Products are at a 1 1 latitudelongitude grid and include atmospheric temperature profiles (up to 10 hPa); total precipitable water vapor and content above four levels up to 300 hPa; surface skin temperature; and cloud properties (amount, type, and cloud-top pressure and temperature). The information is archived as 1-day, 5-day, and monthly means on the entire globe; a.m. and p.m. products for each satellite are stored separately. Eight years have been processed to date, and processing continues at the rate of approximately two satellite-months per day of computer time. Quality assessment studies are presented. They consist of comparisons to conventional meteorological data and to other remote sensing datasets.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Dec 2, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off