Changes in the Climatology, Structure, and Seasonality of Northeast Pacific Atmospheric Rivers in CMIP5 Climate Simulations

Changes in the Climatology, Structure, and Seasonality of Northeast Pacific Atmospheric Rivers in... AbstractThis paper describes changes in the climatology, structure, and seasonality of cool-season atmospheric rivers influencing the U.S. West Coast by examining the climate simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5) that are forced by the representative concentration pathway (RCP) 8.5 scenario. There are only slight changes in atmospheric river (AR) frequency and seasonality between historical (1970–99) and future (2070–99) periods considering the most extreme days (99th percentile) in integrated water vapor transport (IVT) along the U.S. West Coast. Changes in the 99th percentile of precipitation are only significant over the southern portion of the coast. In contrast, using the number of future days exceeding the historical 99th percentile IVT threshold produces statistically significant increases in the frequency of extreme IVT events for all winter months. The peak in future AR days appears to occur approximately one month earlier. The 10-model mean historical and end-of-century composites of extreme IVT days reflect canonical AR conditions, with a plume of high IVT extending from the coast to the southwest. The similar structure and evolution associated with ARs in the historical and future periods suggest little change in large-scale structure of such events during the upcoming century. Increases in extreme IVT intensity are primarily associated with integrated water vapor increases accompanying a warming climate. Along the southern portion of the U.S. West Coast there is less model agreement regarding the structure and intensity of ARs than along the northern portions of the coast. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrometeorology American Meteorological Society

Changes in the Climatology, Structure, and Seasonality of Northeast Pacific Atmospheric Rivers in CMIP5 Climate Simulations

Loading next page...
 
/lp/ams/changes-in-the-climatology-structure-and-seasonality-of-northeast-TWOjj0HEvR
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1525-7541
eISSN
1525-7541
D.O.I.
10.1175/JHM-D-16-0200.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis paper describes changes in the climatology, structure, and seasonality of cool-season atmospheric rivers influencing the U.S. West Coast by examining the climate simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5) that are forced by the representative concentration pathway (RCP) 8.5 scenario. There are only slight changes in atmospheric river (AR) frequency and seasonality between historical (1970–99) and future (2070–99) periods considering the most extreme days (99th percentile) in integrated water vapor transport (IVT) along the U.S. West Coast. Changes in the 99th percentile of precipitation are only significant over the southern portion of the coast. In contrast, using the number of future days exceeding the historical 99th percentile IVT threshold produces statistically significant increases in the frequency of extreme IVT events for all winter months. The peak in future AR days appears to occur approximately one month earlier. The 10-model mean historical and end-of-century composites of extreme IVT days reflect canonical AR conditions, with a plume of high IVT extending from the coast to the southwest. The similar structure and evolution associated with ARs in the historical and future periods suggest little change in large-scale structure of such events during the upcoming century. Increases in extreme IVT intensity are primarily associated with integrated water vapor increases accompanying a warming climate. Along the southern portion of the U.S. West Coast there is less model agreement regarding the structure and intensity of ARs than along the northern portions of the coast.

Journal

Journal of HydrometeorologyAmerican Meteorological Society

Published: Aug 18, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off