Cellular Statistical Models of Broken Cloud Fields. Part III: Markovian Properties

Cellular Statistical Models of Broken Cloud Fields. Part III: Markovian Properties AbstractIn the third part of the “Cellular Statistical Models of Broken Cloud Fields” series the cloud statistics formalism developed in the first two parts is interpreted in terms of the theory of Markov processes. The master matrix introduced in this study is a unifying generalization of both the cloud fraction probability distribution function (PDF) and the Markovian transition probability matrix. To illustrate the new concept, the master matrix is used for computation of the moments of the cloud fraction PDF—in particular, the variance—which until now has not been analytically derived in the framework of the authors’ previous work. This paper also serves as a bridge to the proposed future studies of the effects of sampling and averaging on satellite-based cloud masks. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Cellular Statistical Models of Broken Cloud Fields. Part III: Markovian Properties

Loading next page...
 
/lp/ams/cellular-statistical-models-of-broken-cloud-fields-part-iii-markovian-Wy7ejf4AeZ
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
D.O.I.
10.1175/JAS-D-17-0075.1
Publisher site
See Article on Publisher Site

Abstract

AbstractIn the third part of the “Cellular Statistical Models of Broken Cloud Fields” series the cloud statistics formalism developed in the first two parts is interpreted in terms of the theory of Markov processes. The master matrix introduced in this study is a unifying generalization of both the cloud fraction probability distribution function (PDF) and the Markovian transition probability matrix. To illustrate the new concept, the master matrix is used for computation of the moments of the cloud fraction PDF—in particular, the variance—which until now has not been analytically derived in the framework of the authors’ previous work. This paper also serves as a bridge to the proposed future studies of the effects of sampling and averaging on satellite-based cloud masks.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Sep 9, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off