Cellular Statistical Models of Broken Cloud Fields. Part III: Markovian Properties

Cellular Statistical Models of Broken Cloud Fields. Part III: Markovian Properties AbstractIn the third part of the “Cellular Statistical Models of Broken Cloud Fields” series the cloud statistics formalism developed in the first two parts is interpreted in terms of the theory of Markov processes. The master matrix introduced in this study is a unifying generalization of both the cloud fraction probability distribution function (PDF) and the Markovian transition probability matrix. To illustrate the new concept, the master matrix is used for computation of the moments of the cloud fraction PDF—in particular, the variance—which until now has not been analytically derived in the framework of the authors’ previous work. This paper also serves as a bridge to the proposed future studies of the effects of sampling and averaging on satellite-based cloud masks. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Cellular Statistical Models of Broken Cloud Fields. Part III: Markovian Properties

Loading next page...
 
/lp/ams/cellular-statistical-models-of-broken-cloud-fields-part-iii-markovian-Wy7ejf4AeZ
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
D.O.I.
10.1175/JAS-D-17-0075.1
Publisher site
See Article on Publisher Site

Abstract

AbstractIn the third part of the “Cellular Statistical Models of Broken Cloud Fields” series the cloud statistics formalism developed in the first two parts is interpreted in terms of the theory of Markov processes. The master matrix introduced in this study is a unifying generalization of both the cloud fraction probability distribution function (PDF) and the Markovian transition probability matrix. To illustrate the new concept, the master matrix is used for computation of the moments of the cloud fraction PDF—in particular, the variance—which until now has not been analytically derived in the framework of the authors’ previous work. This paper also serves as a bridge to the proposed future studies of the effects of sampling and averaging on satellite-based cloud masks.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Sep 9, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off