CASES-99: A Comprehensive Investigation of the Stable Nocturnal Boundary Layer

CASES-99: A Comprehensive Investigation of the Stable Nocturnal Boundary Layer The Cooperative AtmosphereSurface Exchange Study1999 (CASES-99) refers to a field experiment carried out in southeast Kansas during October 1999 and the subsequent program of investigation. Comprehensive data, primarily taken during the nighttime but typically including the evening and morning transition, supports data analyses, theoretical studies, and state-of-the-art numerical modeling in a concerted effort by participants to investigate four areas of scientific interest. The choice of these scientific topics is motivated by both the need to delineate physical processes that characterize the stable boundary layer, which are as yet not clearly understood, and the specific scientific goals of the investigators. Each of the scientific goals should be largely achievable with the measurements taken, as is shown with preliminary analysis within the scope of three of the four scientific goals. Underlying this effort is the fundamental motivation to eliminate deficiencies in surface layer and turbulent diffusion parameterizations in atmospheric models, particularly where the Richardson number exceeds 0.25. This extensive nocturnal boundary layer (NBL) dataset is available to the scientific community at large, and the CASES-99 participants encourage all interested parties to utilize it.These preliminary analyses show that during nights where weak (< 2 m s1) surface winds and strong static stability near the surface (exceeding 150 C km1 to 20 m AGL) might otherwise indicate essentially nonturbulent conditions, that various, sometimes undefined, atmospheric phenomena can generate significant turbulent mixing, and therefore significant turbulent fluxes. In many cases, a jet structure will form in the NBL between 50 and 200 m AGL, resulting in strong shear between the surface and jet maximum. Consequently, though surface winds are weak, turbulence can be a significant feature in the stable NBL. Further, contrary to some previous work studying nocturnal jets over the Great Plains, the wind direction in the jet is often influenced by an inertial oscillation and seldom confined to the southerly quadrant (e.g., the Great Plains low-level jet). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Loading next page...
 
/lp/ams/cases-99-a-comprehensive-investigation-of-the-stable-nocturnal-d3tfgzPKK9
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(2002)083<0555:CACIOT>2.3.CO;2
Publisher site
See Article on Publisher Site

Abstract

The Cooperative AtmosphereSurface Exchange Study1999 (CASES-99) refers to a field experiment carried out in southeast Kansas during October 1999 and the subsequent program of investigation. Comprehensive data, primarily taken during the nighttime but typically including the evening and morning transition, supports data analyses, theoretical studies, and state-of-the-art numerical modeling in a concerted effort by participants to investigate four areas of scientific interest. The choice of these scientific topics is motivated by both the need to delineate physical processes that characterize the stable boundary layer, which are as yet not clearly understood, and the specific scientific goals of the investigators. Each of the scientific goals should be largely achievable with the measurements taken, as is shown with preliminary analysis within the scope of three of the four scientific goals. Underlying this effort is the fundamental motivation to eliminate deficiencies in surface layer and turbulent diffusion parameterizations in atmospheric models, particularly where the Richardson number exceeds 0.25. This extensive nocturnal boundary layer (NBL) dataset is available to the scientific community at large, and the CASES-99 participants encourage all interested parties to utilize it.These preliminary analyses show that during nights where weak (< 2 m s1) surface winds and strong static stability near the surface (exceeding 150 C km1 to 20 m AGL) might otherwise indicate essentially nonturbulent conditions, that various, sometimes undefined, atmospheric phenomena can generate significant turbulent mixing, and therefore significant turbulent fluxes. In many cases, a jet structure will form in the NBL between 50 and 200 m AGL, resulting in strong shear between the surface and jet maximum. Consequently, though surface winds are weak, turbulence can be a significant feature in the stable NBL. Further, contrary to some previous work studying nocturnal jets over the Great Plains, the wind direction in the jet is often influenced by an inertial oscillation and seldom confined to the southerly quadrant (e.g., the Great Plains low-level jet).

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Apr 18, 2002

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off