Can We Optimize the Assimilation Order in the Serial Ensemble Kalman Filter? A Study with the Lorenz-96 Model

Can We Optimize the Assimilation Order in the Serial Ensemble Kalman Filter? A Study with the... AbstractWith the serial treatment of observations in the ensemble Kalman filter (EnKF), the assimilation order of observations is usually assumed to have no significant impact on analysis accuracy. However, Nerger derived that analyses with different assimilation orders are different if covariance localization is applied in the observation space. This study explores whether the assimilation order can be optimized to systematically improve the filter estimates. A mathematical demonstration of a simple two-dimensional case indicates that different assimilation orders can cause different analyses, although the differences are two orders of magnitude smaller than the analysis increments if two identical observation error variances are the same size as the two identical state error variances. Numerical experiments using the Lorenz-96 40-variable model show that the small difference due to different assimilation orders could eventually result in a significant difference in analysis accuracy. Several ordering rules are tested, and the results show that an ordering rule that gives a better forecast relative to future observations improves the analysis accuracy. In addition, the analysis is improved significantly by ordering observations from worse to better impacts using the ensemble forecast sensitivity to observations (EFSO), which estimates how much each observation reduces or increases the forecast error. With the EFSO ordering rule, the change in error during the serial assimilation process is similar to that obtained by the experimentally found best sampled assimilation order. The ordering has more impact when the ensemble size is smaller relative to the degrees of freedom of the dynamical system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

Can We Optimize the Assimilation Order in the Serial Ensemble Kalman Filter? A Study with the Lorenz-96 Model

Loading next page...
 
/lp/ams/can-we-optimize-the-assimilation-order-in-the-serial-ensemble-kalman-mScKuRZTu1
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
D.O.I.
10.1175/MWR-D-17-0094.1
Publisher site
See Article on Publisher Site

Abstract

AbstractWith the serial treatment of observations in the ensemble Kalman filter (EnKF), the assimilation order of observations is usually assumed to have no significant impact on analysis accuracy. However, Nerger derived that analyses with different assimilation orders are different if covariance localization is applied in the observation space. This study explores whether the assimilation order can be optimized to systematically improve the filter estimates. A mathematical demonstration of a simple two-dimensional case indicates that different assimilation orders can cause different analyses, although the differences are two orders of magnitude smaller than the analysis increments if two identical observation error variances are the same size as the two identical state error variances. Numerical experiments using the Lorenz-96 40-variable model show that the small difference due to different assimilation orders could eventually result in a significant difference in analysis accuracy. Several ordering rules are tested, and the results show that an ordering rule that gives a better forecast relative to future observations improves the analysis accuracy. In addition, the analysis is improved significantly by ordering observations from worse to better impacts using the ensemble forecast sensitivity to observations (EFSO), which estimates how much each observation reduces or increases the forecast error. With the EFSO ordering rule, the change in error during the serial assimilation process is similar to that obtained by the experimentally found best sampled assimilation order. The ordering has more impact when the ensemble size is smaller relative to the degrees of freedom of the dynamical system.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Dec 11, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off