Can bias correction of regional climate model lateral boundary conditions improve low-frequency rainfall variability?

Can bias correction of regional climate model lateral boundary conditions improve low-frequency... AbstractGlobal climate model simulations inherently contain multiple biases which, when used as boundary conditions for regional climate models, have the potential to produce poor downscaled simulations. Removing these biases before downscaling can potentially improve regional climate change impact assessment. In particular, reducing the low-frequency variability biases in atmospheric variables as well as modeled rainfall is important for hydrological impact assessment, predominantly for the improved simulation of floods and droughts. The impact of this bias in the lateral boundary conditions driving the dynamical downscaling has not been explored before. Here the use of three approaches for correcting the lateral boundary biases including mean, variance, and modification of sample moments through the use of a Nested Bias Correction (NBC) method that corrects for low-frequency variability bias is investigated. These corrections are implemented at the 6-hourly time scale on the global climate model simulations, to drive a regional climate model over the Australian CORDEX domain. The results show that the most substantial improvement in low-frequency variability after bias correction is obtained from modifying the mean field, with smaller changes attributed to the variance. Explicitly modifying monthly and annual lag-1 autocorrelations through NBC does not substantially improve low-frequency variability attributes of simulated precipitation in the regional model over a simpler mean bias correction. These results raise questions about the nature of bias correction techniques that are required to successfully gain improvement in regional climate model simulations and show that more complicated techniques do not necessarily lead to more skillful simulation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Can bias correction of regional climate model lateral boundary conditions improve low-frequency rainfall variability?

Loading next page...
 
/lp/ams/can-bias-correction-of-regional-climate-model-lateral-boundary-XmlUV0eb8l
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-16-0654.1
Publisher site
See Article on Publisher Site

Abstract

AbstractGlobal climate model simulations inherently contain multiple biases which, when used as boundary conditions for regional climate models, have the potential to produce poor downscaled simulations. Removing these biases before downscaling can potentially improve regional climate change impact assessment. In particular, reducing the low-frequency variability biases in atmospheric variables as well as modeled rainfall is important for hydrological impact assessment, predominantly for the improved simulation of floods and droughts. The impact of this bias in the lateral boundary conditions driving the dynamical downscaling has not been explored before. Here the use of three approaches for correcting the lateral boundary biases including mean, variance, and modification of sample moments through the use of a Nested Bias Correction (NBC) method that corrects for low-frequency variability bias is investigated. These corrections are implemented at the 6-hourly time scale on the global climate model simulations, to drive a regional climate model over the Australian CORDEX domain. The results show that the most substantial improvement in low-frequency variability after bias correction is obtained from modifying the mean field, with smaller changes attributed to the variance. Explicitly modifying monthly and annual lag-1 autocorrelations through NBC does not substantially improve low-frequency variability attributes of simulated precipitation in the regional model over a simpler mean bias correction. These results raise questions about the nature of bias correction techniques that are required to successfully gain improvement in regional climate model simulations and show that more complicated techniques do not necessarily lead to more skillful simulation.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Aug 4, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial