Calibrated Probabilistic Hub-Height Wind Forecasts in Complex Terrain

Calibrated Probabilistic Hub-Height Wind Forecasts in Complex Terrain AbstractThis work evaluates the use of a WRF ensemble for short-term, probabilistic, hub-height wind speed forecasts in complex terrain. Testing for probabilistic-forecast improvements is conducted by increasing the number of planetary boundary layer schemes used in the ensemble. Additionally, several prescribed uncertainty models used to derive forecast probabilities based on knowledge of the error within a past training period are evaluated. A Gaussian uncertainty model provided calibrated wind speed forecasts at all wind farms tested. Attempts to scale the Gaussian distribution based on the ensemble mean or variance values did not result in further improvement of the probabilistic forecast performance. When using the Gaussian uncertainty model, a small-sized six-member ensemble showed equal skill to that of the full 48-member ensemble. A new uncertainty model called the pq distribution that better fits the ensemble wind forecast error distribution is introduced. Results indicate that the gross attributes (central tendency, spread, and symmetry) of the prescribed uncertainty model are more important than its exact shape. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Weather and Forecasting American Meteorological Society

Calibrated Probabilistic Hub-Height Wind Forecasts in Complex Terrain

Loading next page...
 
/lp/ams/calibrated-probabilistic-hub-height-wind-forecasts-in-complex-terrain-kRm13ngTBh
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0434
eISSN
1520-0434
D.O.I.
10.1175/WAF-D-16-0137.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis work evaluates the use of a WRF ensemble for short-term, probabilistic, hub-height wind speed forecasts in complex terrain. Testing for probabilistic-forecast improvements is conducted by increasing the number of planetary boundary layer schemes used in the ensemble. Additionally, several prescribed uncertainty models used to derive forecast probabilities based on knowledge of the error within a past training period are evaluated. A Gaussian uncertainty model provided calibrated wind speed forecasts at all wind farms tested. Attempts to scale the Gaussian distribution based on the ensemble mean or variance values did not result in further improvement of the probabilistic forecast performance. When using the Gaussian uncertainty model, a small-sized six-member ensemble showed equal skill to that of the full 48-member ensemble. A new uncertainty model called the pq distribution that better fits the ensemble wind forecast error distribution is introduced. Results indicate that the gross attributes (central tendency, spread, and symmetry) of the prescribed uncertainty model are more important than its exact shape.

Journal

Weather and ForecastingAmerican Meteorological Society

Published: Apr 22, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off