Calibrated Probabilistic Hub-Height Wind Forecasts in Complex Terrain

Calibrated Probabilistic Hub-Height Wind Forecasts in Complex Terrain AbstractThis work evaluates the use of a WRF ensemble for short-term, probabilistic, hub-height wind speed forecasts in complex terrain. Testing for probabilistic-forecast improvements is conducted by increasing the number of planetary boundary layer schemes used in the ensemble. Additionally, several prescribed uncertainty models used to derive forecast probabilities based on knowledge of the error within a past training period are evaluated. A Gaussian uncertainty model provided calibrated wind speed forecasts at all wind farms tested. Attempts to scale the Gaussian distribution based on the ensemble mean or variance values did not result in further improvement of the probabilistic forecast performance. When using the Gaussian uncertainty model, a small-sized six-member ensemble showed equal skill to that of the full 48-member ensemble. A new uncertainty model called the pq distribution that better fits the ensemble wind forecast error distribution is introduced. Results indicate that the gross attributes (central tendency, spread, and symmetry) of the prescribed uncertainty model are more important than its exact shape. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Weather and Forecasting American Meteorological Society

Calibrated Probabilistic Hub-Height Wind Forecasts in Complex Terrain

Loading next page...
 
/lp/ams/calibrated-probabilistic-hub-height-wind-forecasts-in-complex-terrain-kRm13ngTBh
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0434
eISSN
1520-0434
D.O.I.
10.1175/WAF-D-16-0137.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis work evaluates the use of a WRF ensemble for short-term, probabilistic, hub-height wind speed forecasts in complex terrain. Testing for probabilistic-forecast improvements is conducted by increasing the number of planetary boundary layer schemes used in the ensemble. Additionally, several prescribed uncertainty models used to derive forecast probabilities based on knowledge of the error within a past training period are evaluated. A Gaussian uncertainty model provided calibrated wind speed forecasts at all wind farms tested. Attempts to scale the Gaussian distribution based on the ensemble mean or variance values did not result in further improvement of the probabilistic forecast performance. When using the Gaussian uncertainty model, a small-sized six-member ensemble showed equal skill to that of the full 48-member ensemble. A new uncertainty model called the pq distribution that better fits the ensemble wind forecast error distribution is introduced. Results indicate that the gross attributes (central tendency, spread, and symmetry) of the prescribed uncertainty model are more important than its exact shape.

Journal

Weather and ForecastingAmerican Meteorological Society

Published: Apr 22, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial