Buoy Measurements of Wind–Wave Relations during Hurricane Matthew in 2016

Buoy Measurements of Wind–Wave Relations during Hurricane Matthew in 2016 AbstractStudies suggested that neutral-stability wind speed at 10 m U10 ≥ 9 m s −1 and wave steepness Hs/Lp ≥ 0.020 can be taken as criteria for aerodynamically rough ocean surface and the onset of a wind sea, respectively; here, Hs is the significant wave height, and Lp is the peak wavelength. Based on these criteria, it is found that, for the growing wind seas when the wave steepness increases with time during Hurricane Matthew in 2016 before the arrival of its center, the dimensionless significant wave height and peak period is approximately linearly related, resulting in U10 = 35Hs/Tp; here, Tp is the dominant or peak wave period. This proposed wind–wave relation for aerodynamically rough flow over the wind seas is further verified under Hurricane Ivan and North Sea storm conditions. However, after the passage of Matthew’s center, when the wave steepness was nearly steady, a power-law relation between the dimensionless wave height and its period prevailed with its exponent equal to 1.86 and a very high correlation coefficient of 0.97. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Physical Oceanography American Meteorological Society

Buoy Measurements of Wind–Wave Relations during Hurricane Matthew in 2016

Loading next page...
 
/lp/ams/buoy-measurements-of-wind-wave-relations-during-hurricane-matthew-in-f3TW73teCS
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0485
D.O.I.
10.1175/JPO-D-16-0280.1
Publisher site
See Article on Publisher Site

Abstract

AbstractStudies suggested that neutral-stability wind speed at 10 m U10 ≥ 9 m s −1 and wave steepness Hs/Lp ≥ 0.020 can be taken as criteria for aerodynamically rough ocean surface and the onset of a wind sea, respectively; here, Hs is the significant wave height, and Lp is the peak wavelength. Based on these criteria, it is found that, for the growing wind seas when the wave steepness increases with time during Hurricane Matthew in 2016 before the arrival of its center, the dimensionless significant wave height and peak period is approximately linearly related, resulting in U10 = 35Hs/Tp; here, Tp is the dominant or peak wave period. This proposed wind–wave relation for aerodynamically rough flow over the wind seas is further verified under Hurricane Ivan and North Sea storm conditions. However, after the passage of Matthew’s center, when the wave steepness was nearly steady, a power-law relation between the dimensionless wave height and its period prevailed with its exponent equal to 1.86 and a very high correlation coefficient of 0.97.

Journal

Journal of Physical OceanographyAmerican Meteorological Society

Published: Oct 19, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off