Benchmarking of a Physically Based Hydrologic Model

Benchmarking of a Physically Based Hydrologic Model AbstractThe concepts of model benchmarking, model agility, and large-sample hydrology are becoming more prevalent in hydrologic and land surface modeling. As modeling systems become more sophisticated, these concepts have the ability to help improve modeling capabilities and understanding. In this paper, their utility is demonstrated with an application of the physically based Variable Infiltration Capacity model (VIC). The authors implement VIC for a sample of 531 basins across the contiguous United States, incrementally increase model agility, and perform comparisons to a benchmark. The use of a large-sample set allows for statistically robust comparisons and subcategorization across hydroclimate conditions. Our benchmark is a calibrated, time-stepping, conceptual hydrologic model. This model is constrained by physical relationships such as the water balance, and it complements purely statistical benchmarks due to the increased physical realism and permits physically motivated benchmarking using metrics that relate one variable to another (e.g., runoff ratio). The authors find that increasing model agility along the parameter dimension, as measured by the number of model parameters available for calibration, does increase model performance for calibration and validation periods relative to less agile implementations. However, as agility increases, transferability decreases, even for a complex model such as VIC. The benchmark outperforms VIC in even the most agile case when evaluated across the entire basin set. However, VIC meets or exceeds benchmark performance in basins with high runoff ratios (greater than ~0.8), highlighting the ability of large-sample comparative hydrology to identify hydroclimatic performance variations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrometeorology American Meteorological Society

Benchmarking of a Physically Based Hydrologic Model

Loading next page...
 
/lp/ams/benchmarking-of-a-physically-based-hydrologic-model-dWo2IZcK1e
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1525-7541
eISSN
1525-7541
D.O.I.
10.1175/JHM-D-16-0284.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe concepts of model benchmarking, model agility, and large-sample hydrology are becoming more prevalent in hydrologic and land surface modeling. As modeling systems become more sophisticated, these concepts have the ability to help improve modeling capabilities and understanding. In this paper, their utility is demonstrated with an application of the physically based Variable Infiltration Capacity model (VIC). The authors implement VIC for a sample of 531 basins across the contiguous United States, incrementally increase model agility, and perform comparisons to a benchmark. The use of a large-sample set allows for statistically robust comparisons and subcategorization across hydroclimate conditions. Our benchmark is a calibrated, time-stepping, conceptual hydrologic model. This model is constrained by physical relationships such as the water balance, and it complements purely statistical benchmarks due to the increased physical realism and permits physically motivated benchmarking using metrics that relate one variable to another (e.g., runoff ratio). The authors find that increasing model agility along the parameter dimension, as measured by the number of model parameters available for calibration, does increase model performance for calibration and validation periods relative to less agile implementations. However, as agility increases, transferability decreases, even for a complex model such as VIC. The benchmark outperforms VIC in even the most agile case when evaluated across the entire basin set. However, VIC meets or exceeds benchmark performance in basins with high runoff ratios (greater than ~0.8), highlighting the ability of large-sample comparative hydrology to identify hydroclimatic performance variations.

Journal

Journal of HydrometeorologyAmerican Meteorological Society

Published: Aug 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off