Bayesian Retrievals of Vertically Resolved Cloud Particle Size Distribution Properties

Bayesian Retrievals of Vertically Resolved Cloud Particle Size Distribution Properties AbstractRetrievals of liquid cloud properties from remote sensing observations by necessity assume sufficient information is contained in the measurements, and in the prior knowledge of the cloudy state, to uniquely determine a solution. Bayesian algorithms produce a retrieval that consists of the joint probability distribution function (PDF) of cloud properties given the measurements and prior knowledge. The Bayesian posterior PDF provides the maximum likelihood estimate, the information content in specific measurements, the effect of observation and forward model uncertainties, and quantitative error estimates. It also provides a test of whether, and in which contexts, a set of observations is able to provide a unique solution. In this work, a Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to sample the joint posterior PDF for retrieved cloud properties in shallow liquid clouds over the remote Southern Ocean. Combined active and passive observations from spaceborne W-band cloud radar and visible and near-infrared reflectance are used to retrieve the parameters of a gamma particle size distribution (PSD) for cloud droplets and drizzle. Combined active and passive measurements are able to distinguish between clouds with and without precipitation; however, unique retrieval of PSD properties requires specification of a scene-appropriate prior estimate. While much of the uncertainty in an unconstrained retrieval can be mitigated by use of information from 94-GHz passive brightness temperature measurements, simply increasing measurement accuracy does not render a unique solution. The results demonstrate the robustness of a Bayesian retrieval methodology and highlight the importance of an appropriately scene-consistent prior constraint in underdetermined remote sensing retrievals. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Meteorology and Climatology American Meteorological Society

Bayesian Retrievals of Vertically Resolved Cloud Particle Size Distribution Properties

Loading next page...
 
/lp/ams/bayesian-retrievals-of-vertically-resolved-cloud-particle-size-B20KjeT7BM
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1558-8432
eISSN
1558-8432
D.O.I.
10.1175/JAMC-D-16-0276.1
Publisher site
See Article on Publisher Site

Abstract

AbstractRetrievals of liquid cloud properties from remote sensing observations by necessity assume sufficient information is contained in the measurements, and in the prior knowledge of the cloudy state, to uniquely determine a solution. Bayesian algorithms produce a retrieval that consists of the joint probability distribution function (PDF) of cloud properties given the measurements and prior knowledge. The Bayesian posterior PDF provides the maximum likelihood estimate, the information content in specific measurements, the effect of observation and forward model uncertainties, and quantitative error estimates. It also provides a test of whether, and in which contexts, a set of observations is able to provide a unique solution. In this work, a Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to sample the joint posterior PDF for retrieved cloud properties in shallow liquid clouds over the remote Southern Ocean. Combined active and passive observations from spaceborne W-band cloud radar and visible and near-infrared reflectance are used to retrieve the parameters of a gamma particle size distribution (PSD) for cloud droplets and drizzle. Combined active and passive measurements are able to distinguish between clouds with and without precipitation; however, unique retrieval of PSD properties requires specification of a scene-appropriate prior estimate. While much of the uncertainty in an unconstrained retrieval can be mitigated by use of information from 94-GHz passive brightness temperature measurements, simply increasing measurement accuracy does not render a unique solution. The results demonstrate the robustness of a Bayesian retrieval methodology and highlight the importance of an appropriately scene-consistent prior constraint in underdetermined remote sensing retrievals.

Journal

Journal of Applied Meteorology and ClimatologyAmerican Meteorological Society

Published: Mar 16, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial