Atmospheric Responses and Feedback to the Meridional Ocean Heat Transport in the North Pacific

Atmospheric Responses and Feedback to the Meridional Ocean Heat Transport in the North Pacific AbstractAtmospheric responses and feedback to meridional ocean heat transport (OHT) have been investigated using a global climate model that is interactively connected with a high-resolution regional ocean model embedded in the western North Pacific. Compared with a global climate model without the regional model, the net heat supply into the Kuroshio–Oyashio Extension (KOE) region is increased as a result of the increase of the mean northward ocean heat transport (OHT) by the western boundary currents and mesoscale eddies. Resultant sea surface temperature (SST) rise sharpens the meridional SST gradient and reinforces the cross-frontal difference of the surface heat flux and thereby enhances lower-tropospheric baroclinicity. These changes cause northward deflection and strengthening of the wintertime storm track over the North Pacific, which leads to the Pacific–North American (PNA)-like pattern anticyclonic response of the mean westerly jet. The increase of the eddy northward atmospheric heat flux (AHF) associated with the enhanced storm-track activity is compensated by the decrease of the mean northward AHF. The changes of the atmospheric circulations reduce the mean northward OHT in the eastern North Pacific that compensates the increase of the mean northward OHT in the KOE region. The atmospheric responses, which have once been excited by the SST fronts in the KOE region, stabilize the trans–North Pacific OHT. The modeling results herein suggest that basinwide Bjerknes-like compensation works in air–sea coupled processes for the formation of the climatic mean state in the North Pacific. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Atmospheric Responses and Feedback to the Meridional Ocean Heat Transport in the North Pacific

Loading next page...
 
/lp/ams/atmospheric-responses-and-feedback-to-the-meridional-ocean-heat-cmMQkknbT0
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
eISSN
1520-0442
D.O.I.
10.1175/JCLI-D-16-0055.1
Publisher site
See Article on Publisher Site

Abstract

AbstractAtmospheric responses and feedback to meridional ocean heat transport (OHT) have been investigated using a global climate model that is interactively connected with a high-resolution regional ocean model embedded in the western North Pacific. Compared with a global climate model without the regional model, the net heat supply into the Kuroshio–Oyashio Extension (KOE) region is increased as a result of the increase of the mean northward ocean heat transport (OHT) by the western boundary currents and mesoscale eddies. Resultant sea surface temperature (SST) rise sharpens the meridional SST gradient and reinforces the cross-frontal difference of the surface heat flux and thereby enhances lower-tropospheric baroclinicity. These changes cause northward deflection and strengthening of the wintertime storm track over the North Pacific, which leads to the Pacific–North American (PNA)-like pattern anticyclonic response of the mean westerly jet. The increase of the eddy northward atmospheric heat flux (AHF) associated with the enhanced storm-track activity is compensated by the decrease of the mean northward AHF. The changes of the atmospheric circulations reduce the mean northward OHT in the eastern North Pacific that compensates the increase of the mean northward OHT in the KOE region. The atmospheric responses, which have once been excited by the SST fronts in the KOE region, stabilize the trans–North Pacific OHT. The modeling results herein suggest that basinwide Bjerknes-like compensation works in air–sea coupled processes for the formation of the climatic mean state in the North Pacific.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Aug 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial