Assimilation of GOES-13 Imager Clear-Sky Water Vapor (6.5 μm) Radiances into a Warn-on-Forecast System

Assimilation of GOES-13 Imager Clear-Sky Water Vapor (6.5 μm) Radiances into a Warn-on-Forecast... AbstractA prototype convection-allowing system using the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) Model and employing an ensemble Kalman filter (EnKF) data assimilation technique has been developed and used during the spring 2016 and 2017 Hazardous Weather Testbeds. This system assimilates WSR-88D reflectivity and radial velocity, geostationary satellite cloud water path (CWP) retrievals, and available surface observations over a regional domain with a 3-km horizontal resolution at 15-min intervals, with 3-km initial conditions provided by an experimental High-Resolution Rapid Refresh ensemble (HRRR-e). However, no information on upper-level thermodynamic conditions in cloud-free regions is currently assimilated, as few timely observations exist. One potential solution is to also assimilate clear-sky satellite radiances, which provide information on mid- and upper-tropospheric temperature and moisture conditions. This research assimilates GOES-13 imager water vapor band (6.5 μm) radiances using the GSI-EnKF system to take advantage of the Community Radiative Transfer Model (CRTM) integration. Results using four cases from May 2016 showed that assimilating radiances generally had a neutral-to-positive impact on the model analysis, reducing humidity bias and/or errors at the appropriate model levels where verification observations were present. The effects on high-impact weather forecasts, as verified against forecast reflectivity and updraft helicity, were mixed. Three cases (9, 22, and 24 May) showed some improvement in skill, while the other (25 May) performed worse, despite the improved environment. This research represents the first step in designing a high-resolution ensemble data assimilation system to use GOES-16 Advanced Baseline Imager data, which provides additional water vapor bands and increased spatial and temporal resolution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

Assimilation of GOES-13 Imager Clear-Sky Water Vapor (6.5 μm) Radiances into a Warn-on-Forecast System

Loading next page...
 
/lp/ams/assimilation-of-goes-13-imager-clear-sky-water-vapor-6-5-m-radiances-iKD9PrWq9n
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
eISSN
1520-0493
D.O.I.
10.1175/MWR-D-17-0280.1
Publisher site
See Article on Publisher Site

Abstract

AbstractA prototype convection-allowing system using the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) Model and employing an ensemble Kalman filter (EnKF) data assimilation technique has been developed and used during the spring 2016 and 2017 Hazardous Weather Testbeds. This system assimilates WSR-88D reflectivity and radial velocity, geostationary satellite cloud water path (CWP) retrievals, and available surface observations over a regional domain with a 3-km horizontal resolution at 15-min intervals, with 3-km initial conditions provided by an experimental High-Resolution Rapid Refresh ensemble (HRRR-e). However, no information on upper-level thermodynamic conditions in cloud-free regions is currently assimilated, as few timely observations exist. One potential solution is to also assimilate clear-sky satellite radiances, which provide information on mid- and upper-tropospheric temperature and moisture conditions. This research assimilates GOES-13 imager water vapor band (6.5 μm) radiances using the GSI-EnKF system to take advantage of the Community Radiative Transfer Model (CRTM) integration. Results using four cases from May 2016 showed that assimilating radiances generally had a neutral-to-positive impact on the model analysis, reducing humidity bias and/or errors at the appropriate model levels where verification observations were present. The effects on high-impact weather forecasts, as verified against forecast reflectivity and updraft helicity, were mixed. Three cases (9, 22, and 24 May) showed some improvement in skill, while the other (25 May) performed worse, despite the improved environment. This research represents the first step in designing a high-resolution ensemble data assimilation system to use GOES-16 Advanced Baseline Imager data, which provides additional water vapor bands and increased spatial and temporal resolution.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Apr 27, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off