Assessment of Radio Occultation Observations from the COSMIC-2 Mission with a Simplified Observing System Simulation Experiment Configuration

Assessment of Radio Occultation Observations from the COSMIC-2 Mission with a Simplified... AbstractThe mainstay of the global radio occultation (RO) system, the COSMIC constellation of six satellites launched in April 2006, is already past the end of its nominal lifetime and the number of soundings is rapidly declining because the constellation is degrading. For about the last decade, COSMIC profiles have been collected and their retrievals assimilated in numerical weather prediction systems to improve operational weather forecasts. The success of RO in increasing forecast skill and COSMIC’s aging constellation have motivated planning for the COSMIC-2 mission, a 12-satellite constellation to be deployed in two launches. The first six satellites (COSMIC-2A) are expected to be deployed in December 2017 in a low-inclination orbit for dense equatorial coverage, while the second six (COSMIC-2B) are expected to be launched later in a high-inclination orbit for global coverage. To evaluate the potential benefits from COSMIC-2, an earlier version of the NCEP’s operational forecast model and data assimilation system is used to conduct a series of observing system simulation experiments with simulated soundings from the COSMIC-2 mission. In agreement with earlier studies using real RO observations, the benefits from assimilating COSMIC-2 observations are found to be most significant in the Southern Hemisphere. No or very little gain in forecast skill is found by adding COSMIC-2A to COSMIC-2B, making the launch of COSMIC-2B more important for terrestrial global weather forecasting than that of COSMIC-2A. Furthermore, results suggest that further improvement in forecast skill might better be obtained with the addition of more RO observations with global coverage and other types of observations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

Assessment of Radio Occultation Observations from the COSMIC-2 Mission with a Simplified Observing System Simulation Experiment Configuration

Loading next page...
 
/lp/ams/assessment-of-radio-occultation-observations-from-the-cosmic-2-mission-E5Vv5WoI28
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
eISSN
1520-0493
D.O.I.
10.1175/MWR-D-16-0475.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe mainstay of the global radio occultation (RO) system, the COSMIC constellation of six satellites launched in April 2006, is already past the end of its nominal lifetime and the number of soundings is rapidly declining because the constellation is degrading. For about the last decade, COSMIC profiles have been collected and their retrievals assimilated in numerical weather prediction systems to improve operational weather forecasts. The success of RO in increasing forecast skill and COSMIC’s aging constellation have motivated planning for the COSMIC-2 mission, a 12-satellite constellation to be deployed in two launches. The first six satellites (COSMIC-2A) are expected to be deployed in December 2017 in a low-inclination orbit for dense equatorial coverage, while the second six (COSMIC-2B) are expected to be launched later in a high-inclination orbit for global coverage. To evaluate the potential benefits from COSMIC-2, an earlier version of the NCEP’s operational forecast model and data assimilation system is used to conduct a series of observing system simulation experiments with simulated soundings from the COSMIC-2 mission. In agreement with earlier studies using real RO observations, the benefits from assimilating COSMIC-2 observations are found to be most significant in the Southern Hemisphere. No or very little gain in forecast skill is found by adding COSMIC-2A to COSMIC-2B, making the launch of COSMIC-2B more important for terrestrial global weather forecasting than that of COSMIC-2A. Furthermore, results suggest that further improvement in forecast skill might better be obtained with the addition of more RO observations with global coverage and other types of observations.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Sep 16, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off