Assessment of MERRA-2 Land Surface Energy Flux Estimates

Assessment of MERRA-2 Land Surface Energy Flux Estimates AbstractIn the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) system the land is forced by replacing the model-generated precipitation with observed precipitation before it reaches the surface. This approach is motivated by the expectation that the resultant improvements in soil moisture will lead to improved land surface latent heating (LH). Here aspects of the MERRA-2 land surface energy budget and 2-m air temperatures are assessed. For global land annual averages, MERRA-2 appears to overestimate the LH (by 5 W m−2), the sensible heating (by 6 W m−2), and the downwelling shortwave radiation (by 14 W m−2) while underestimating the downwelling and upwelling (absolute) longwave radiation (by 10–15 W m−2 each). These results differ only slightly from those for NASA’s previous reanalysis, MERRA. Comparison to various gridded reference datasets over boreal summer (June–August) suggests that MERRA-2 has particularly large positive biases (>20 W m−2) where LH is energy limited and that these biases are associated with evaporative fraction biases rather than radiation biases. For time series of monthly means during boreal summer, the globally averaged anomaly correlations with reference data were improved from MERRA to MERRA-2, for LH (from 0.39 to 0.48 vs Global Land Evaporation Amsterdam Model data) and the daily maximum T2m (from 0.69 to 0.75 vs Climatic Research Unit data). In regions where is particularly sensitive to the precipitation corrections (including the central United States, the Sahel, and parts of South Asia), the changes in the are relatively large, suggesting that the observed precipitation influenced the performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Assessment of MERRA-2 Land Surface Energy Flux Estimates

Loading next page...
 
/lp/ams/assessment-of-merra-2-land-surface-energy-flux-estimates-FrwiA93w5z
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-17-0121.1
Publisher site
See Article on Publisher Site

Abstract

AbstractIn the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) system the land is forced by replacing the model-generated precipitation with observed precipitation before it reaches the surface. This approach is motivated by the expectation that the resultant improvements in soil moisture will lead to improved land surface latent heating (LH). Here aspects of the MERRA-2 land surface energy budget and 2-m air temperatures are assessed. For global land annual averages, MERRA-2 appears to overestimate the LH (by 5 W m−2), the sensible heating (by 6 W m−2), and the downwelling shortwave radiation (by 14 W m−2) while underestimating the downwelling and upwelling (absolute) longwave radiation (by 10–15 W m−2 each). These results differ only slightly from those for NASA’s previous reanalysis, MERRA. Comparison to various gridded reference datasets over boreal summer (June–August) suggests that MERRA-2 has particularly large positive biases (>20 W m−2) where LH is energy limited and that these biases are associated with evaporative fraction biases rather than radiation biases. For time series of monthly means during boreal summer, the globally averaged anomaly correlations with reference data were improved from MERRA to MERRA-2, for LH (from 0.39 to 0.48 vs Global Land Evaporation Amsterdam Model data) and the daily maximum T2m (from 0.69 to 0.75 vs Climatic Research Unit data). In regions where is particularly sensitive to the precipitation corrections (including the central United States, the Sahel, and parts of South Asia), the changes in the are relatively large, suggesting that the observed precipitation influenced the performance.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Jan 24, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off