Assessing CYGNSS’s Potential to Observe Extratropical Fronts and Cyclones

Assessing CYGNSS’s Potential to Observe Extratropical Fronts and Cyclones AbstractThe Cyclone Global Navigation Satellite System (CYGNSS) mission, launched in December 2016, is designed to estimate surface wind speeds over the global tropical oceans. Nevertheless, its orbit allows the constellation to view regions up to 40° latitude. As such, it is possible that CYGNSS will provide observations of a number of low-latitude extratropical cyclones and their associated fronts. In this study, one year of simulated CYGNSS specular point locations is combined with a database of objectively identified fronts and cyclones to assess the potential efficacy of CYGNSS for observing extratropical systems. It is found that, with the exception of regions poleward of warm fronts, the subset of locations in the simulated CYGNSS dataset nearly exactly matches the distribution of wind speeds and surface fluxes across frontal zones and near cyclone centers in the reanalysis database. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Meteorology and Climatology American Meteorological Society

Assessing CYGNSS’s Potential to Observe Extratropical Fronts and Cyclones

Loading next page...
 
/lp/ams/assessing-cygnss-s-potential-to-observe-extratropical-fronts-and-DOOB9WTlGi
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1558-8432
eISSN
1558-8432
D.O.I.
10.1175/JAMC-D-17-0050.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe Cyclone Global Navigation Satellite System (CYGNSS) mission, launched in December 2016, is designed to estimate surface wind speeds over the global tropical oceans. Nevertheless, its orbit allows the constellation to view regions up to 40° latitude. As such, it is possible that CYGNSS will provide observations of a number of low-latitude extratropical cyclones and their associated fronts. In this study, one year of simulated CYGNSS specular point locations is combined with a database of objectively identified fronts and cyclones to assess the potential efficacy of CYGNSS for observing extratropical systems. It is found that, with the exception of regions poleward of warm fronts, the subset of locations in the simulated CYGNSS dataset nearly exactly matches the distribution of wind speeds and surface fluxes across frontal zones and near cyclone centers in the reanalysis database.

Journal

Journal of Applied Meteorology and ClimatologyAmerican Meteorological Society

Published: Jul 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off