Analysis of Global Cloud Imagery from Multiple Satellites

Analysis of Global Cloud Imagery from Multiple Satellites Synoptic images of the global cloud field have been created from infrared measurements taken aboard four geostationary and two polar-orbiting platforms simultaneously observing the earth. A series of spatial and temporal interpolations together with data reliability criteria are used to composite data from the individual satellites into synoptic images of the global cloud pattern. The composite Global Cloud Imagery (GCI) have a horizontal resolution of about half a degree and a temporal resolution of 3 h, providing an unprecedented view of the earth's cloud field. Each composite image represents a nearly instantaneous snapshot of the global cloud pattern. Collectively, the composite imagery resolve, on a global basis, most of the variability associated with organized convection, including several harmonics of the diurnal cycle.The dense and 3-dimensional nature of the GCI make them a formidable volume of information to treat in a practical and efficient manner. To facilitate analysis of global cloud behavior, the GCI has been constructed with certain homogeneous properties. In addition to synoptic coverage of the globe, data are spaced uniformly in longitude, latitude, and time, and contain no data voids. An interactive Image Analysis System (IAS) has been developed to investigate the space-time behavior of global cloud activity. In the IAS, data, hardware, and software are integrated into a single system capable of providing a variety of space-time covariance analyses. Because of its customized architecture and the homogeneous properties of the GCI, the IAS can perform such analyses on the 3-dimensional data with interactive speed. Statistical properties of cloud variability are presented along with other preliminary results derived from the GCI. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Analysis of Global Cloud Imagery from Multiple Satellites

Loading next page...
 
/lp/ams/analysis-of-global-cloud-imagery-from-multiple-satellites-Q8fneRz0Pc
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(1991)072<0467:AOGCIF>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

Synoptic images of the global cloud field have been created from infrared measurements taken aboard four geostationary and two polar-orbiting platforms simultaneously observing the earth. A series of spatial and temporal interpolations together with data reliability criteria are used to composite data from the individual satellites into synoptic images of the global cloud pattern. The composite Global Cloud Imagery (GCI) have a horizontal resolution of about half a degree and a temporal resolution of 3 h, providing an unprecedented view of the earth's cloud field. Each composite image represents a nearly instantaneous snapshot of the global cloud pattern. Collectively, the composite imagery resolve, on a global basis, most of the variability associated with organized convection, including several harmonics of the diurnal cycle.The dense and 3-dimensional nature of the GCI make them a formidable volume of information to treat in a practical and efficient manner. To facilitate analysis of global cloud behavior, the GCI has been constructed with certain homogeneous properties. In addition to synoptic coverage of the globe, data are spaced uniformly in longitude, latitude, and time, and contain no data voids. An interactive Image Analysis System (IAS) has been developed to investigate the space-time behavior of global cloud activity. In the IAS, data, hardware, and software are integrated into a single system capable of providing a variety of space-time covariance analyses. Because of its customized architecture and the homogeneous properties of the GCI, the IAS can perform such analyses on the 3-dimensional data with interactive speed. Statistical properties of cloud variability are presented along with other preliminary results derived from the GCI.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Apr 1, 1991

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial