An Optimization Strategy for Identifying Parameter Sensitivity in Atmospheric and Oceanic Models

An Optimization Strategy for Identifying Parameter Sensitivity in Atmospheric and Oceanic Models AbstractA new optimization strategy is proposed to identify the sensitivities of simulations of atmospheric and oceanic models to uncertain parameters. The strategy is based on a nonlinear optimization method that is able to estimate the maximum values of specific parameter sensitivity measures; meanwhile, it takes into account interactions among uncertain parameters. It is tested using the Lorenz’63 model and an intermediate complexity 2.5-layer shallow-water model of the North Pacific Ocean. For the Lorenz’63 model, it is shown that the parameter sensitivities of the model results depend on the initial conditions. For the 2.5-layer shallow-water model used to simulate the Kuroshio large meander (KLM) south of Japan, the optimization strategy reveals that the prediction of the KLM path is insensitive to the uncertainties in the bottom friction coefficient, the interfacial friction coefficient, and the lateral friction coefficient. Rather, the KLM prediction is relatively sensitive to the uncertainties of the reduced gravity representing ocean stratification and the wind stress coefficient. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

An Optimization Strategy for Identifying Parameter Sensitivity in Atmospheric and Oceanic Models

Loading next page...
 
/lp/ams/an-optimization-strategy-for-identifying-parameter-sensitivity-in-PEvbHrMFSc
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
eISSN
1520-0493
D.O.I.
10.1175/MWR-D-16-0393.1
Publisher site
See Article on Publisher Site

Abstract

AbstractA new optimization strategy is proposed to identify the sensitivities of simulations of atmospheric and oceanic models to uncertain parameters. The strategy is based on a nonlinear optimization method that is able to estimate the maximum values of specific parameter sensitivity measures; meanwhile, it takes into account interactions among uncertain parameters. It is tested using the Lorenz’63 model and an intermediate complexity 2.5-layer shallow-water model of the North Pacific Ocean. For the Lorenz’63 model, it is shown that the parameter sensitivities of the model results depend on the initial conditions. For the 2.5-layer shallow-water model used to simulate the Kuroshio large meander (KLM) south of Japan, the optimization strategy reveals that the prediction of the KLM path is insensitive to the uncertainties in the bottom friction coefficient, the interfacial friction coefficient, and the lateral friction coefficient. Rather, the KLM prediction is relatively sensitive to the uncertainties of the reduced gravity representing ocean stratification and the wind stress coefficient.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Aug 19, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off