An Optimization Strategy for Identifying Parameter Sensitivity in Atmospheric and Oceanic Models

An Optimization Strategy for Identifying Parameter Sensitivity in Atmospheric and Oceanic Models AbstractA new optimization strategy is proposed to identify the sensitivities of simulations of atmospheric and oceanic models to uncertain parameters. The strategy is based on a nonlinear optimization method that is able to estimate the maximum values of specific parameter sensitivity measures; meanwhile, it takes into account interactions among uncertain parameters. It is tested using the Lorenz’63 model and an intermediate complexity 2.5-layer shallow-water model of the North Pacific Ocean. For the Lorenz’63 model, it is shown that the parameter sensitivities of the model results depend on the initial conditions. For the 2.5-layer shallow-water model used to simulate the Kuroshio large meander (KLM) south of Japan, the optimization strategy reveals that the prediction of the KLM path is insensitive to the uncertainties in the bottom friction coefficient, the interfacial friction coefficient, and the lateral friction coefficient. Rather, the KLM prediction is relatively sensitive to the uncertainties of the reduced gravity representing ocean stratification and the wind stress coefficient. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

An Optimization Strategy for Identifying Parameter Sensitivity in Atmospheric and Oceanic Models

Loading next page...
 
/lp/ams/an-optimization-strategy-for-identifying-parameter-sensitivity-in-PEvbHrMFSc
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
eISSN
1520-0493
D.O.I.
10.1175/MWR-D-16-0393.1
Publisher site
See Article on Publisher Site

Abstract

AbstractA new optimization strategy is proposed to identify the sensitivities of simulations of atmospheric and oceanic models to uncertain parameters. The strategy is based on a nonlinear optimization method that is able to estimate the maximum values of specific parameter sensitivity measures; meanwhile, it takes into account interactions among uncertain parameters. It is tested using the Lorenz’63 model and an intermediate complexity 2.5-layer shallow-water model of the North Pacific Ocean. For the Lorenz’63 model, it is shown that the parameter sensitivities of the model results depend on the initial conditions. For the 2.5-layer shallow-water model used to simulate the Kuroshio large meander (KLM) south of Japan, the optimization strategy reveals that the prediction of the KLM path is insensitive to the uncertainties in the bottom friction coefficient, the interfacial friction coefficient, and the lateral friction coefficient. Rather, the KLM prediction is relatively sensitive to the uncertainties of the reduced gravity representing ocean stratification and the wind stress coefficient.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Aug 19, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial