An Assessment of the NCEP, NASA, and ECMWF Reanalyses over the Tropical West Pacific Warm Pool

An Assessment of the NCEP, NASA, and ECMWF Reanalyses over the Tropical West Pacific Warm Pool Three very different views of the mean structure and variability of deep convection over the tropical east Indian and west Pacific Oceans, provided by three different reanalysis datasets for 198093, are highlighted. The datasets were generated at the National Centers for Environmental Prediction, the National Aeronautics and Space Administration's Goddard Laboratory for Atmospheres, and the European Centre for Medium-Range Weather Forecasts (ECMWF). Precipitation, outgoing longwave radiation (OLR), and 200-mb wind divergence fields from the three datasets are compared with one another and with satellite observations. Climatological means as well as interannual and intraseasonal (3070 day) variability are discussed. For brevity the focus is restricted to northern winter (DJF).The internal consistency of the datasets is high, in the sense that the geographical extremes of rainfall, OLR, and divergence in each dataset correspond closely to one another. On the other hand, the external consistency, that is, the agreement between the datasets, is so low as to defy a simple summary. Indeed, the differences are such as to raise fundamental questions concerning 1) whether there is a single or a split ITCZ over the west Pacific Ocean with a strong northern branch, 2) whether there is more convection to the west or the east of Sumatra over the equatorial Indian Ocean, and 3) whether there is a relative minimum of convection near New Guinea. Geographical maps of interannual and intraseasonal variances also show similar order 1 uncertainties, as do regressions against the principal component time series of the MaddenJulian oscillation. The annual cycle of convection is also different in each reanalysis. Overall, the ECMWF reanalysis compares best with observations in this region, but it too has important errors.Finally, it is noted that although 200-mb divergence fields in the three datasets are highly inconsistent with one another, the 200-mb vorticity fields are highly consistent. This reaffirms the relevance of diagnosing divergence from knowledge of the vorticity using the method described in Sardeshmukh (1993). This would yield divergence fields from the three datasets that are not only more consistent with each other, but also more consistent with the 200-mb vorticity balance. Further, as proxies of deep convection, they would help resolve many of the issues raised above. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

An Assessment of the NCEP, NASA, and ECMWF Reanalyses over the Tropical West Pacific Warm Pool

Loading next page...
 
/lp/ams/an-assessment-of-the-ncep-nasa-and-ecmwf-reanalyses-over-the-tropical-iJZyIJocUl
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(2000)081<0041:AAOTNN>2.3.CO;2
Publisher site
See Article on Publisher Site

Abstract

Three very different views of the mean structure and variability of deep convection over the tropical east Indian and west Pacific Oceans, provided by three different reanalysis datasets for 198093, are highlighted. The datasets were generated at the National Centers for Environmental Prediction, the National Aeronautics and Space Administration's Goddard Laboratory for Atmospheres, and the European Centre for Medium-Range Weather Forecasts (ECMWF). Precipitation, outgoing longwave radiation (OLR), and 200-mb wind divergence fields from the three datasets are compared with one another and with satellite observations. Climatological means as well as interannual and intraseasonal (3070 day) variability are discussed. For brevity the focus is restricted to northern winter (DJF).The internal consistency of the datasets is high, in the sense that the geographical extremes of rainfall, OLR, and divergence in each dataset correspond closely to one another. On the other hand, the external consistency, that is, the agreement between the datasets, is so low as to defy a simple summary. Indeed, the differences are such as to raise fundamental questions concerning 1) whether there is a single or a split ITCZ over the west Pacific Ocean with a strong northern branch, 2) whether there is more convection to the west or the east of Sumatra over the equatorial Indian Ocean, and 3) whether there is a relative minimum of convection near New Guinea. Geographical maps of interannual and intraseasonal variances also show similar order 1 uncertainties, as do regressions against the principal component time series of the MaddenJulian oscillation. The annual cycle of convection is also different in each reanalysis. Overall, the ECMWF reanalysis compares best with observations in this region, but it too has important errors.Finally, it is noted that although 200-mb divergence fields in the three datasets are highly inconsistent with one another, the 200-mb vorticity fields are highly consistent. This reaffirms the relevance of diagnosing divergence from knowledge of the vorticity using the method described in Sardeshmukh (1993). This would yield divergence fields from the three datasets that are not only more consistent with each other, but also more consistent with the 200-mb vorticity balance. Further, as proxies of deep convection, they would help resolve many of the issues raised above.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Jan 24, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off