An Assessment of the ECMWF Extreme Forecast Index for Water Vapor Transport during Boreal Winter

An Assessment of the ECMWF Extreme Forecast Index for Water Vapor Transport during Boreal Winter AbstractEarly awareness of extreme precipitation can provide the time necessary to make adequate event preparations. At the European Centre for Medium-Range Weather Forecasts (ECMWF), one tool that condenses the forecast information from the Integrated Forecasting System ensemble (ENS) is the extreme forecast index (EFI), an index that highlights regions that are forecast to have potentially anomalous weather conditions compared to the local climate. This paper builds on previous findings by undertaking a global verification throughout the medium-range forecast horizon (out to 15 days) on the ability of the EFI for water vapor transport [integrated vapor transport (IVT)] and precipitation to capture extreme observed precipitation. Using the ECMWF ENS for winters 2015/16 and 2016/17 and daily surface precipitation observations, the relative operating characteristic is used to show that the IVT EFI is more skillful than the precipitation EFI in forecast week 2 over Europe and western North America. It is the large-scale nature of the IVT, its higher predictability, and its relationship with extreme precipitation that result in its potential usefulness in these regions, which, in turn, could provide earlier awareness of extreme precipitation. Conversely, at shorter lead times the precipitation EFI is more useful, although the IVT EFI can provide synoptic-scale understanding. For the whole globe, the extratropical Northern Hemisphere, the tropics, and North America, the precipitation EFI is more useful throughout the medium range, suggesting that precipitation processes not captured in the IVT are important (e.g., tropical convection). Following these results, the operational implementation of the IVT EFI is currently being planned. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Weather and Forecasting American Meteorological Society

An Assessment of the ECMWF Extreme Forecast Index for Water Vapor Transport during Boreal Winter

Loading next page...
 
/lp/ams/an-assessment-of-the-ecmwf-extreme-forecast-index-for-water-vapor-GRcHjlxf3u
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0434
D.O.I.
10.1175/WAF-D-17-0073.1
Publisher site
See Article on Publisher Site

Abstract

AbstractEarly awareness of extreme precipitation can provide the time necessary to make adequate event preparations. At the European Centre for Medium-Range Weather Forecasts (ECMWF), one tool that condenses the forecast information from the Integrated Forecasting System ensemble (ENS) is the extreme forecast index (EFI), an index that highlights regions that are forecast to have potentially anomalous weather conditions compared to the local climate. This paper builds on previous findings by undertaking a global verification throughout the medium-range forecast horizon (out to 15 days) on the ability of the EFI for water vapor transport [integrated vapor transport (IVT)] and precipitation to capture extreme observed precipitation. Using the ECMWF ENS for winters 2015/16 and 2016/17 and daily surface precipitation observations, the relative operating characteristic is used to show that the IVT EFI is more skillful than the precipitation EFI in forecast week 2 over Europe and western North America. It is the large-scale nature of the IVT, its higher predictability, and its relationship with extreme precipitation that result in its potential usefulness in these regions, which, in turn, could provide earlier awareness of extreme precipitation. Conversely, at shorter lead times the precipitation EFI is more useful, although the IVT EFI can provide synoptic-scale understanding. For the whole globe, the extratropical Northern Hemisphere, the tropics, and North America, the precipitation EFI is more useful throughout the medium range, suggesting that precipitation processes not captured in the IVT are important (e.g., tropical convection). Following these results, the operational implementation of the IVT EFI is currently being planned.

Journal

Weather and ForecastingAmerican Meteorological Society

Published: Aug 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off