An Algorithm for Classifying Unknown Expendable Bathythermograph (XBT) Instruments Based on Existing Metadata

An Algorithm for Classifying Unknown Expendable Bathythermograph (XBT) Instruments Based on... AbstractTime-varying biases in expendable bathythermograph (XBT) instruments have emerged as a key uncertainty in estimates of historical ocean heat content variability and change. One of the challenges in the development of XBT bias corrections is the lack of metadata in ocean profile databases. Approximately 50% of XBT profiles in the World Ocean database (WOD) have no information about manufacturer or probe type. Building on previous research efforts, this paper presents a deterministic algorithm for assigning missing XBT manufacturer and probe type for individual temperature profiles based on 1) the reporting country, 2) the maximum reported depth, and 3) the record date. The criteria used are based on bulk analysis of known XBT profiles in the WOD for the period 1966–2015. A basic skill assessment demonstrates a 77% success rate at correctly assigning manufacturer and probe type for profiles where this information is available. The skill rate is lowest during the early 1990s, which is also a period when metadata information is particularly poor. The results suggest that substantive improvements could be made through further data analysis and that future algorithms may benefit from including a larger number of predictor variables. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Atmospheric and Oceanic Technology American Meteorological Society

An Algorithm for Classifying Unknown Expendable Bathythermograph (XBT) Instruments Based on Existing Metadata

Loading next page...
 
/lp/ams/an-algorithm-for-classifying-unknown-expendable-bathythermograph-xbt-uwCozD7DrC
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0426
D.O.I.
10.1175/JTECH-D-17-0129.1
Publisher site
See Article on Publisher Site

Abstract

AbstractTime-varying biases in expendable bathythermograph (XBT) instruments have emerged as a key uncertainty in estimates of historical ocean heat content variability and change. One of the challenges in the development of XBT bias corrections is the lack of metadata in ocean profile databases. Approximately 50% of XBT profiles in the World Ocean database (WOD) have no information about manufacturer or probe type. Building on previous research efforts, this paper presents a deterministic algorithm for assigning missing XBT manufacturer and probe type for individual temperature profiles based on 1) the reporting country, 2) the maximum reported depth, and 3) the record date. The criteria used are based on bulk analysis of known XBT profiles in the WOD for the period 1966–2015. A basic skill assessment demonstrates a 77% success rate at correctly assigning manufacturer and probe type for profiles where this information is available. The skill rate is lowest during the early 1990s, which is also a period when metadata information is particularly poor. The results suggest that substantive improvements could be made through further data analysis and that future algorithms may benefit from including a larger number of predictor variables.

Journal

Journal of Atmospheric and Oceanic TechnologyAmerican Meteorological Society

Published: Mar 14, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial