Aircraft Particle Inlets: State-of-the-Art and Future Needs

Aircraft Particle Inlets: State-of-the-Art and Future Needs Aircraft inlets connect airborne instruments for particle microphysical and chemical measurements with the ambient atmosphere. These inlets may bias the measurements due to their potential to enhance or remove certain particle size fractions in the sample. The aircraft body itself may disturb the ambient air streamlines and, hence, the particle sampling. Also, anisokinetic sampling and transmission losses within the sampling lines may cause the sampled aerosol to differ from the ambient aerosol. In addition, inlets may change the particle composition and size through the evaporation of water and other volatile materials due to compressibility effects or heat transfer. These problems have been discussed at an international workshop that was held at the Leibniz-Institute for Tropospheric Research (IfT) in Leipzig, Germany, on 1213 April 2002. The discussions, conclusions, and recommendations from this workshop are summarized here. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Loading next page...
 
/lp/ams/aircraft-particle-inlets-state-of-the-art-and-future-needs-Jqju2WZFVC
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/BAMS-85-1-89
Publisher site
See Article on Publisher Site

Abstract

Aircraft inlets connect airborne instruments for particle microphysical and chemical measurements with the ambient atmosphere. These inlets may bias the measurements due to their potential to enhance or remove certain particle size fractions in the sample. The aircraft body itself may disturb the ambient air streamlines and, hence, the particle sampling. Also, anisokinetic sampling and transmission losses within the sampling lines may cause the sampled aerosol to differ from the ambient aerosol. In addition, inlets may change the particle composition and size through the evaporation of water and other volatile materials due to compressibility effects or heat transfer. These problems have been discussed at an international workshop that was held at the Leibniz-Institute for Tropospheric Research (IfT) in Leipzig, Germany, on 1213 April 2002. The discussions, conclusions, and recommendations from this workshop are summarized here.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Jan 28, 2004

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial