A Terminal Area PBL Prediction System at DallasFort Worth and Its Application in Simulating Diurnal PBL Jets

A Terminal Area PBL Prediction System at DallasFort Worth and Its Application in Simulating... A state-of-the-science meso--scale numerical weather prediction model is being employed in a prototype forecast system for potential operational use at the DallasFort Worth International Airport (DFW). The numerical model is part of a unique operational forecasting system being developed to support the National Aeronautics and Space Administration's (NASA) Terminal Area Productivity Program. This operational forecasting system will focus on meso--scale aviation weather problems involving planetary boundary layer (PBL) turbulence, and is named the Terminal Area PBL Prediction System (TAPPS). TAPPS (version 1) is being tested and developed for NASA in an effort to improve 16-h terminal area forecasts of wind, vertical wind shear, temperature, and turbulence within both stable and convective PBLs at major airport terminal areas. This is being done to enhance terminal area productivity, that is, aircraft arrival and departure throughput, by using the weather forecasts as part of the Aircraft Vortex Spacing System (AVOSS). AVOSS is dependent upon nowcasts or short-period forecasts of wind, temperature, and eddy dissipation rate so that the drift and dissipation of wake vortices can be anticipated for safe airport operation. This AVOSS system will be demonstrated during calendar year 2000 at DFW.This paper describes the numerical modeling system, which has three basic components: the numerical model, the initial data stream, and the postprocessing system. Also included are the results of several case study simulations with the numerical model from a field program that occurred in September 1997 at DFW. During this field program, detailed local measurements throughout the troposphere, with special emphasis on the PBL, were taken at and surrounding DFW in an effort to verify the numerical model simulations. Comparisons indicate that the numerical model is capable of an accurate simulation of the vertical wind shear structure during the diurnal evolution of the PBL when compared directly to specific local observations. The case studies represent unambiguous examples of the dynamics of the Great Plains diurnal low-level jet stream. This diurnal jet stream represents the dominant low-level wind shearproduction mechanism during quiescent synoptic-scale flow regimes. Five consecutive daily case studies, during which this phenomenon was observed over and in proximity to DFW, are compared to the products derived from TAPPS. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

A Terminal Area PBL Prediction System at DallasFort Worth and Its Application in Simulating Diurnal PBL Jets

Loading next page...
 
/lp/ams/a-terminal-area-pbl-prediction-system-at-dallasfort-worth-and-its-2YfPJm8MCI
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(2000)081<2179:ATAPPS>2.3.CO;2
Publisher site
See Article on Publisher Site

Abstract

A state-of-the-science meso--scale numerical weather prediction model is being employed in a prototype forecast system for potential operational use at the DallasFort Worth International Airport (DFW). The numerical model is part of a unique operational forecasting system being developed to support the National Aeronautics and Space Administration's (NASA) Terminal Area Productivity Program. This operational forecasting system will focus on meso--scale aviation weather problems involving planetary boundary layer (PBL) turbulence, and is named the Terminal Area PBL Prediction System (TAPPS). TAPPS (version 1) is being tested and developed for NASA in an effort to improve 16-h terminal area forecasts of wind, vertical wind shear, temperature, and turbulence within both stable and convective PBLs at major airport terminal areas. This is being done to enhance terminal area productivity, that is, aircraft arrival and departure throughput, by using the weather forecasts as part of the Aircraft Vortex Spacing System (AVOSS). AVOSS is dependent upon nowcasts or short-period forecasts of wind, temperature, and eddy dissipation rate so that the drift and dissipation of wake vortices can be anticipated for safe airport operation. This AVOSS system will be demonstrated during calendar year 2000 at DFW.This paper describes the numerical modeling system, which has three basic components: the numerical model, the initial data stream, and the postprocessing system. Also included are the results of several case study simulations with the numerical model from a field program that occurred in September 1997 at DFW. During this field program, detailed local measurements throughout the troposphere, with special emphasis on the PBL, were taken at and surrounding DFW in an effort to verify the numerical model simulations. Comparisons indicate that the numerical model is capable of an accurate simulation of the vertical wind shear structure during the diurnal evolution of the PBL when compared directly to specific local observations. The case studies represent unambiguous examples of the dynamics of the Great Plains diurnal low-level jet stream. This diurnal jet stream represents the dominant low-level wind shearproduction mechanism during quiescent synoptic-scale flow regimes. Five consecutive daily case studies, during which this phenomenon was observed over and in proximity to DFW, are compared to the products derived from TAPPS.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Sep 7, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off