A Single-Radar Technique for Estimating the Winds in Tropical Cyclones

A Single-Radar Technique for Estimating the Winds in Tropical Cyclones A method for determining horizontal wind speeds in hurricanes using ground-based radars is presented and evaluated. The method makes use of the tracking reflectivity echos by correlation (TREC) method where individual features in radar reflectivity are tracked, from radar sweeps several minutes apart, by finding the maxima in the cross-correlation function between the two times. This method has been applied successfully in determining motions within the clear boundary layer where reflectors are insects and refractive index variations, but it generally has failed when applied to determining air motions by tracking precipitation elements in strong environmental shear. It appears to work in the lower few kilometers of the hurricane where the vertical wind shear is relatively weak.Examples are presented where the TREC algorithm is applied to three landfalling hurricanes: Hurricanes Hugo and Erin in the United States and Typhoon Herb in Taiwan. The results from Hugo, where the radar data were provided by a WSR-57, were compared to in situ wind measurements by the National Oceanic and Atmospheric Administration P-3 research aircraft. In Erin and Herb, Doppler radar data are available and the radial winds (with respect to the radar) computed by TREC could be compared.The results were very promising. In Hugo, the agreement between the TREC analysis and the aircraft winds was generally to within 10. In Erin and Herb less than 20 of the difference between radial-Doppler wind estimations by TREC and the actual Doppler wind measurements was greater than 5 m s1. When Herb was closer to the radar, however, the error rates were much higher due to the interference of ground clutter.TREC promises to provide a quick and reasonably accurate method for continuously computing fully two-dimensional winds from land-based radars as hurricanes approach the coast. Such information would complement that provided by Doppler radars where it could estimate the tangential component to the radar that is not observed using Doppler radar techniques, and it can provide useful wind information from reflectivity beyond the more limited range where the Doppler velocities can be determined. It can also retrieve wind information in hurricanes from conventional radar data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

A Single-Radar Technique for Estimating the Winds in Tropical Cyclones

Loading next page...
 
/lp/ams/a-single-radar-technique-for-estimating-the-winds-in-tropical-cyclones-mnmg06eCwW
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(1999)080<0653:ASRTFE>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

A method for determining horizontal wind speeds in hurricanes using ground-based radars is presented and evaluated. The method makes use of the tracking reflectivity echos by correlation (TREC) method where individual features in radar reflectivity are tracked, from radar sweeps several minutes apart, by finding the maxima in the cross-correlation function between the two times. This method has been applied successfully in determining motions within the clear boundary layer where reflectors are insects and refractive index variations, but it generally has failed when applied to determining air motions by tracking precipitation elements in strong environmental shear. It appears to work in the lower few kilometers of the hurricane where the vertical wind shear is relatively weak.Examples are presented where the TREC algorithm is applied to three landfalling hurricanes: Hurricanes Hugo and Erin in the United States and Typhoon Herb in Taiwan. The results from Hugo, where the radar data were provided by a WSR-57, were compared to in situ wind measurements by the National Oceanic and Atmospheric Administration P-3 research aircraft. In Erin and Herb, Doppler radar data are available and the radial winds (with respect to the radar) computed by TREC could be compared.The results were very promising. In Hugo, the agreement between the TREC analysis and the aircraft winds was generally to within 10. In Erin and Herb less than 20 of the difference between radial-Doppler wind estimations by TREC and the actual Doppler wind measurements was greater than 5 m s1. When Herb was closer to the radar, however, the error rates were much higher due to the interference of ground clutter.TREC promises to provide a quick and reasonably accurate method for continuously computing fully two-dimensional winds from land-based radars as hurricanes approach the coast. Such information would complement that provided by Doppler radars where it could estimate the tangential component to the radar that is not observed using Doppler radar techniques, and it can provide useful wind information from reflectivity beyond the more limited range where the Doppler velocities can be determined. It can also retrieve wind information in hurricanes from conventional radar data.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Apr 20, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off