A Review of Thunderstorm Electrification Processes

A Review of Thunderstorm Electrification Processes AbstractRecent developments in the area of thunderstorm electrification processes are reviewed. These processes have two main divisions; (a) convective, in which particles charged by ion capture are moved by convection currents to strengthen the electric field in the cloud, and (b) processes involving charge transfer during particle interactions, following which oppositely charged particles move apart in the updraft to form the observed charge centers. Type-b processes are further subdivided into inductive (relying on the preexistence of an electric field) and noninductive charge-transfer mechanisms. Field and laboratory evidence points to the importance of interactions between particles of the ice phase, in the presence of liquid water droplets, in separating electric charge in thunderstorms. Recent experimental studies have investigated the dependence of charge transfer on the size and relative velocity of the interacting particles and have determined the dependence of the sign of the charge transfer on temperature and cloud liquid water content. Field data upon which the laboratory simulations are based are obtained by increasingly sophisticated airborne and ground-based means. Calculations of electric field growth using experimental charge-transfer data in numerical models of the dynamical and microphysical development of thunderstorms show agreement with observations, although further refinement is required. Some directions for future research are outlined. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

A Review of Thunderstorm Electrification Processes

Apr 5, 1993

Loading next page...
 
/lp/ams/a-review-of-thunderstorm-electrification-processes-ImbdbAaqQ4
Copyright
Copyright © American Meteorological Society
ISSN
0894-8763
D.O.I.
10.1175/1520-0450(1993)032<0642:AROTEP>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

AbstractRecent developments in the area of thunderstorm electrification processes are reviewed. These processes have two main divisions; (a) convective, in which particles charged by ion capture are moved by convection currents to strengthen the electric field in the cloud, and (b) processes involving charge transfer during particle interactions, following which oppositely charged particles move apart in the updraft to form the observed charge centers. Type-b processes are further subdivided into inductive (relying on the preexistence of an electric field) and noninductive charge-transfer mechanisms. Field and laboratory evidence points to the importance of interactions between particles of the ice phase, in the presence of liquid water droplets, in separating electric charge in thunderstorms. Recent experimental studies have investigated the dependence of charge transfer on the size and relative velocity of the interacting particles and have determined the dependence of the sign of the charge transfer on temperature and cloud liquid water content. Field data upon which the laboratory simulations are based are obtained by increasingly sophisticated airborne and ground-based means. Calculations of electric field growth using experimental charge-transfer data in numerical models of the dynamical and microphysical development of thunderstorms show agreement with observations, although further refinement is required. Some directions for future research are outlined.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial