A Quality Control Method for Wind Profiler Observations toward Assimilation Applications

A Quality Control Method for Wind Profiler Observations toward Assimilation Applications AbstractA wind profiler network with a total of 65 profiling radar systems was operated by the China Meteorological Observation Center (MOC) of the China Meteorological Administration (CMA) until July 2015. In this study, a quality control procedure is constructed to incorporate the profiler data from the wind-profiling network into the local data assimilation and forecasting systems. The procedure applies a blacklisting check that removes stations with gross errors and an outlier check that rejects data with large deviations from the background. As opposed to the biweight method, which has been commonly implemented in outlier elimination for univariate observations, the outlier elimination method is developed based on the iterated reweighted minimum covariance determinant (IRMCD) for multivariate observations, such as wind profiler data. A quality control experiment is performed separately for subsets containing profiler data tagged with/without rain flags in parallel every 0000 and 1200 UTC from 20 June to 30 September 2015. The results show that with quality control, the frequency distributions of the differences between the observations and the model background meet the requirements of a Gaussian distribution for data assimilation. A further intensive assessment of each quality control step reveals that the stations rejected by the blacklisting contained poor data quality and that the IRMCD rejects outliers in a robust and physically reasonable manner. Detailed comparisons between the IRMCD and the biweight method are performed, and the IRMCD is demonstrated to be more efficient and more comprehensive regarding the dataset used in this study. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Atmospheric and Oceanic Technology American Meteorological Society

A Quality Control Method for Wind Profiler Observations toward Assimilation Applications

Loading next page...
 
/lp/ams/a-quality-control-method-for-wind-profiler-observations-toward-0AAd6dEYo0
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0426
eISSN
1520-0426
D.O.I.
10.1175/JTECH-D-16-0161.1
Publisher site
See Article on Publisher Site

Abstract

AbstractA wind profiler network with a total of 65 profiling radar systems was operated by the China Meteorological Observation Center (MOC) of the China Meteorological Administration (CMA) until July 2015. In this study, a quality control procedure is constructed to incorporate the profiler data from the wind-profiling network into the local data assimilation and forecasting systems. The procedure applies a blacklisting check that removes stations with gross errors and an outlier check that rejects data with large deviations from the background. As opposed to the biweight method, which has been commonly implemented in outlier elimination for univariate observations, the outlier elimination method is developed based on the iterated reweighted minimum covariance determinant (IRMCD) for multivariate observations, such as wind profiler data. A quality control experiment is performed separately for subsets containing profiler data tagged with/without rain flags in parallel every 0000 and 1200 UTC from 20 June to 30 September 2015. The results show that with quality control, the frequency distributions of the differences between the observations and the model background meet the requirements of a Gaussian distribution for data assimilation. A further intensive assessment of each quality control step reveals that the stations rejected by the blacklisting contained poor data quality and that the IRMCD rejects outliers in a robust and physically reasonable manner. Detailed comparisons between the IRMCD and the biweight method are performed, and the IRMCD is demonstrated to be more efficient and more comprehensive regarding the dataset used in this study.

Journal

Journal of Atmospheric and Oceanic TechnologyAmerican Meteorological Society

Published: Jul 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off