A Pragmatic Approach to Build a Reduced Regional Climate Projection Ensemble for Germany Using the EURO-CORDEX 8.5 Ensemble

A Pragmatic Approach to Build a Reduced Regional Climate Projection Ensemble for Germany Using... AbstractThe application of an ensemble reduction technique to the European branch of the World Climate Research Program Coordinated Regional Downscaling Experiment (EURO-CORDEX) ensemble at resolution “EUR-11” (~12.5 km) under the RCP8.5 scenario is presented. The technique is based on monthly mean changes between a reference and two future time periods, calculated for eight regions in Germany, of the parameters near-surface air temperature (tas), precipitation totals (pr), contribution of precipitation from very wet days to precipitation totals (R95pTOT), near-surface specific humidity (huss), and surface downwelling shortwave radiation (rsds). The sensitivity of the reduction procedure with respect to a number of tuning parameters is investigated. When the optimal combination of tuning parameters is applied, the technique allows the reduction from 15 to 7 ensemble members, while the reduced ensemble reproduces about 94% of the spread of the full ensemble. Keeping in mind that climate projection ensembles are expected to grow substantially in the near future, this ensemble reduction technique can be useful to limit the computational efforts necessary for further processing and applications such as impact modeling. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Meteorology and Climatology American Meteorological Society

A Pragmatic Approach to Build a Reduced Regional Climate Projection Ensemble for Germany Using the EURO-CORDEX 8.5 Ensemble

Loading next page...
 
/lp/ams/a-pragmatic-approach-to-build-a-reduced-regional-climate-projection-W9GjSmoYvM
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1558-8432
D.O.I.
10.1175/JAMC-D-17-0141.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe application of an ensemble reduction technique to the European branch of the World Climate Research Program Coordinated Regional Downscaling Experiment (EURO-CORDEX) ensemble at resolution “EUR-11” (~12.5 km) under the RCP8.5 scenario is presented. The technique is based on monthly mean changes between a reference and two future time periods, calculated for eight regions in Germany, of the parameters near-surface air temperature (tas), precipitation totals (pr), contribution of precipitation from very wet days to precipitation totals (R95pTOT), near-surface specific humidity (huss), and surface downwelling shortwave radiation (rsds). The sensitivity of the reduction procedure with respect to a number of tuning parameters is investigated. When the optimal combination of tuning parameters is applied, the technique allows the reduction from 15 to 7 ensemble members, while the reduced ensemble reproduces about 94% of the spread of the full ensemble. Keeping in mind that climate projection ensembles are expected to grow substantially in the near future, this ensemble reduction technique can be useful to limit the computational efforts necessary for further processing and applications such as impact modeling.

Journal

Journal of Applied Meteorology and ClimatologyAmerican Meteorological Society

Published: Mar 18, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial