A Pragmatic Approach to Build a Reduced Regional Climate Projection Ensemble for Germany Using the EURO-CORDEX 8.5 Ensemble

A Pragmatic Approach to Build a Reduced Regional Climate Projection Ensemble for Germany Using... AbstractThe application of an ensemble reduction technique to the European branch of the World Climate Research Program Coordinated Regional Downscaling Experiment (EURO-CORDEX) ensemble at resolution “EUR-11” (~12.5 km) under the RCP8.5 scenario is presented. The technique is based on monthly mean changes between a reference and two future time periods, calculated for eight regions in Germany, of the parameters near-surface air temperature (tas), precipitation totals (pr), contribution of precipitation from very wet days to precipitation totals (R95pTOT), near-surface specific humidity (huss), and surface downwelling shortwave radiation (rsds). The sensitivity of the reduction procedure with respect to a number of tuning parameters is investigated. When the optimal combination of tuning parameters is applied, the technique allows the reduction from 15 to 7 ensemble members, while the reduced ensemble reproduces about 94% of the spread of the full ensemble. Keeping in mind that climate projection ensembles are expected to grow substantially in the near future, this ensemble reduction technique can be useful to limit the computational efforts necessary for further processing and applications such as impact modeling. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Meteorology and Climatology American Meteorological Society

A Pragmatic Approach to Build a Reduced Regional Climate Projection Ensemble for Germany Using the EURO-CORDEX 8.5 Ensemble

Loading next page...
 
/lp/ams/a-pragmatic-approach-to-build-a-reduced-regional-climate-projection-W9GjSmoYvM
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1558-8432
D.O.I.
10.1175/JAMC-D-17-0141.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe application of an ensemble reduction technique to the European branch of the World Climate Research Program Coordinated Regional Downscaling Experiment (EURO-CORDEX) ensemble at resolution “EUR-11” (~12.5 km) under the RCP8.5 scenario is presented. The technique is based on monthly mean changes between a reference and two future time periods, calculated for eight regions in Germany, of the parameters near-surface air temperature (tas), precipitation totals (pr), contribution of precipitation from very wet days to precipitation totals (R95pTOT), near-surface specific humidity (huss), and surface downwelling shortwave radiation (rsds). The sensitivity of the reduction procedure with respect to a number of tuning parameters is investigated. When the optimal combination of tuning parameters is applied, the technique allows the reduction from 15 to 7 ensemble members, while the reduced ensemble reproduces about 94% of the spread of the full ensemble. Keeping in mind that climate projection ensembles are expected to grow substantially in the near future, this ensemble reduction technique can be useful to limit the computational efforts necessary for further processing and applications such as impact modeling.

Journal

Journal of Applied Meteorology and ClimatologyAmerican Meteorological Society

Published: Mar 18, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off