A post-processing method for seasonal forecasts using temporally and spatially smoothed statistics

A post-processing method for seasonal forecasts using temporally and spatially smoothed statistics AbstractA statistical post-processing method for seasonal forecasts based on temporally and spatially smoothed climate statistics is introduced. The method uses information available from seasonal hindcasts initialized at the beginning of 12 calendar months. The performance of the method is tested in both deterministic and probabilistic frameworks using output from the ensemble of seasonal hindcasts produced by the Canadian Seasonal to Interannual Prediction System for the 30-yr period 1981–2010. Forecast skill improvements are found to be greater when forecast adjustment parameters estimated for individual seasons and at individual grid points are temporally and spatially smoothed. The greatest skill improvements are typically achieved for seasonally invariant parameters while skill improvements due to additional spatial smoothing are modest. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

A post-processing method for seasonal forecasts using temporally and spatially smoothed statistics

Loading next page...
 
/lp/ams/a-post-processing-method-for-seasonal-forecasts-using-temporally-and-WonaNIKHoy
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
D.O.I.
10.1175/MWR-D-16-0337.1
Publisher site
See Article on Publisher Site

Abstract

AbstractA statistical post-processing method for seasonal forecasts based on temporally and spatially smoothed climate statistics is introduced. The method uses information available from seasonal hindcasts initialized at the beginning of 12 calendar months. The performance of the method is tested in both deterministic and probabilistic frameworks using output from the ensemble of seasonal hindcasts produced by the Canadian Seasonal to Interannual Prediction System for the 30-yr period 1981–2010. Forecast skill improvements are found to be greater when forecast adjustment parameters estimated for individual seasons and at individual grid points are temporally and spatially smoothed. The greatest skill improvements are typically achieved for seasonally invariant parameters while skill improvements due to additional spatial smoothing are modest.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Jun 16, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial