A Physically Based Horizontal Subgrid-Scale Turbulent Mixing Parameterization for the Convective Boundary Layer

A Physically Based Horizontal Subgrid-Scale Turbulent Mixing Parameterization for the Convective... AbstractCompared to the representation of vertical turbulent mixing through various planetary boundary layer (PBL) schemes, the treatment of horizontal turbulent mixing in the boundary layer has received much less attention. In mesoscale and convective-scale models, subgrid-scale horizontal turbulent mixing has traditionally been associated with mesoscale circulations or eddies. Its parameterization most often adopts the gradient-diffusion model, where the horizontal mixing coefficients are usually set constant, or through the 2D Smagorinsky formulation, or in some cases based on the 1.5-order turbulence kinetic energy (TKE) closure. For horizontal turbulent mixing associated with boundary layer eddies, the traditional schemes are shown to perform poorly. This work investigates the characteristic turbulence velocity and length scales based on analysis of a well-resolved, wide-domain large-eddy simulation of a convective boundary layer (CBL). To improve the representation of horizontal turbulent mixing by CBL eddies, a class of schemes is proposed with different levels of sophistication. The first two schemes can be used together with first-order PBL schemes, while the third uses TKE to define its characteristic velocity scale and can be used together with TKE-based higher-order PBL schemes. The proposed parameterizations are tested a posteriori in idealized simulations of turbulent dispersion of a passive scalar. Comparisons show improved horizontal dispersion by the proposed schemes and further demonstrate the weakness of the existing schemes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

A Physically Based Horizontal Subgrid-Scale Turbulent Mixing Parameterization for the Convective Boundary Layer

Loading next page...
 
/lp/ams/a-physically-based-horizontal-subgrid-scale-turbulent-mixing-uyhE4DePMW
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
D.O.I.
10.1175/JAS-D-16-0324.1
Publisher site
See Article on Publisher Site

Abstract

AbstractCompared to the representation of vertical turbulent mixing through various planetary boundary layer (PBL) schemes, the treatment of horizontal turbulent mixing in the boundary layer has received much less attention. In mesoscale and convective-scale models, subgrid-scale horizontal turbulent mixing has traditionally been associated with mesoscale circulations or eddies. Its parameterization most often adopts the gradient-diffusion model, where the horizontal mixing coefficients are usually set constant, or through the 2D Smagorinsky formulation, or in some cases based on the 1.5-order turbulence kinetic energy (TKE) closure. For horizontal turbulent mixing associated with boundary layer eddies, the traditional schemes are shown to perform poorly. This work investigates the characteristic turbulence velocity and length scales based on analysis of a well-resolved, wide-domain large-eddy simulation of a convective boundary layer (CBL). To improve the representation of horizontal turbulent mixing by CBL eddies, a class of schemes is proposed with different levels of sophistication. The first two schemes can be used together with first-order PBL schemes, while the third uses TKE to define its characteristic velocity scale and can be used together with TKE-based higher-order PBL schemes. The proposed parameterizations are tested a posteriori in idealized simulations of turbulent dispersion of a passive scalar. Comparisons show improved horizontal dispersion by the proposed schemes and further demonstrate the weakness of the existing schemes.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Aug 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off