A Novel Instrument for Real-Time Measurement of Attenuation of Weather Radar Radome Including Its Outer Surface. Part II: Applications

A Novel Instrument for Real-Time Measurement of Attenuation of Weather Radar Radome Including Its... AbstractThe concept and theory of a novel instrument to characterize the radio frequency performance of a radome under different conditions, including dirtiness, wetness, and varying temperature, was presented and discussed in Part I. The proposed concept estimates the transmittance through the radome using the reflected signal, directly measured, and an algorithm to evaluate the water absorption on the radome surface. In this second part of the paper, the proposed concept was employed to characterize the radome of an operative X-band weather radar in both dry and wet conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Atmospheric and Oceanic Technology American Meteorological Society

A Novel Instrument for Real-Time Measurement of Attenuation of Weather Radar Radome Including Its Outer Surface. Part II: Applications

Loading next page...
 
/lp/ams/a-novel-instrument-for-real-time-measurement-of-attenuation-of-weather-b40W8ifl8b
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0426
eISSN
1520-0426
D.O.I.
10.1175/JTECH-D-17-0084.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe concept and theory of a novel instrument to characterize the radio frequency performance of a radome under different conditions, including dirtiness, wetness, and varying temperature, was presented and discussed in Part I. The proposed concept estimates the transmittance through the radome using the reflected signal, directly measured, and an algorithm to evaluate the water absorption on the radome surface. In this second part of the paper, the proposed concept was employed to characterize the radome of an operative X-band weather radar in both dry and wet conditions.

Journal

Journal of Atmospheric and Oceanic TechnologyAmerican Meteorological Society

Published: May 8, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off