A New Perspective of StratosphereTroposphere Exchange

A New Perspective of StratosphereTroposphere Exchange Stratospheretroposphere exchange (STE) is important for the chemical composition of both the stratosphere and troposphere. Modifications of STE in a changing climate may affect stratospheric ozone depletion and the oxidizing capacity of the troposphere significantly. However, STE is still poorly understood and inadequately quantified, due to the involvement of physical and dynamical processes on local to global scales and to conceptual problems. In this study, a presentday global climatology of STE is developed that is based, from a data standpoint, on 15 yr of global meteorological reanalyses, and, from a conceptual standpoint, on a Lagrangian perspective that considers the pathways of exchange air parcels and their residence times in the troposphere and lowermost stratosphere. To this end, two complementary Lagrangian models are used. Particular consideration is given to deep exchange events that, through fast ascent of tropospheric or fast descent of stratospheric air masses, bring into contact air from the (potentially polluted) boundary layer and lower stratosphere. It is shown that they have different characteristics (strongly preferred geographical locations and a pronounced seasonal cycle) from that of the full set of exchange events. This result is important for accurately characterizing the effects of STE. In particular, it can be inferred that the well-documented springtime maximum of surface ozone cannot be explained primarily by STE. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Loading next page...
 
/lp/ams/a-new-perspective-of-stratospheretroposphere-exchange-579MK4dXz7
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/BAMS-84-11-1565
Publisher site
See Article on Publisher Site

Abstract

Stratospheretroposphere exchange (STE) is important for the chemical composition of both the stratosphere and troposphere. Modifications of STE in a changing climate may affect stratospheric ozone depletion and the oxidizing capacity of the troposphere significantly. However, STE is still poorly understood and inadequately quantified, due to the involvement of physical and dynamical processes on local to global scales and to conceptual problems. In this study, a presentday global climatology of STE is developed that is based, from a data standpoint, on 15 yr of global meteorological reanalyses, and, from a conceptual standpoint, on a Lagrangian perspective that considers the pathways of exchange air parcels and their residence times in the troposphere and lowermost stratosphere. To this end, two complementary Lagrangian models are used. Particular consideration is given to deep exchange events that, through fast ascent of tropospheric or fast descent of stratospheric air masses, bring into contact air from the (potentially polluted) boundary layer and lower stratosphere. It is shown that they have different characteristics (strongly preferred geographical locations and a pronounced seasonal cycle) from that of the full set of exchange events. This result is important for accurately characterizing the effects of STE. In particular, it can be inferred that the well-documented springtime maximum of surface ozone cannot be explained primarily by STE.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Nov 20, 2003

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off