A new Method to Correct Radiosonde Temperature Biases using Radio Occultation Data

A new Method to Correct Radiosonde Temperature Biases using Radio Occultation Data AbstractA new method to estimate radiosonde temperature biases using radio occultation measurements as a reference has been developed. The bias is estimated as the difference between mean radio occultation and mean radiosonde departures from co-located profiles extracted from the Met Office global numerical weather prediction (NWP) system. Using NWP background profiles reduces the impact of spatial and temporal co-location errors. The use of NWP output also permits determination of the lowest level at which the atmosphere is sufficiently dry to analyse radio occultation dry temperature retrievals. We demonstrate the advantages of using a new tangent linear version of the dry temperature retrieval algorithm to propagate bending angle departures to dry temperature departures. This reduces the influence of a priori assumptions, compared to a non-linear retrieval. Radiosonde temperature biases which depend on altitude and the solar elevation angle are presented for five carefully chosen upper-air sites and show strong inter-site differences, with biases exceeding 2 K at one of the sites. If implemented in NWP models to correct radiosonde temperature biases prior to assimilation, this method could aid the need for consistent anchor measurements in the assimilation system. The method presented here is therefore relevant to NWP centers and the results will be of interest to the radiosonde community by providing site-specific temperature bias profiles. The new tangent linear version of the linear Abel transform and the hydrostatic integration are described in the interests of the radio occultation community. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Meteorology and Climatology American Meteorological Society

A new Method to Correct Radiosonde Temperature Biases using Radio Occultation Data

Loading next page...
 
/lp/ams/a-new-method-to-correct-radiosonde-temperature-biases-using-radio-SNr3DMSXAE
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1558-8432
eISSN
1558-8432
D.O.I.
10.1175/JAMC-D-16-0136.1
Publisher site
See Article on Publisher Site

Abstract

AbstractA new method to estimate radiosonde temperature biases using radio occultation measurements as a reference has been developed. The bias is estimated as the difference between mean radio occultation and mean radiosonde departures from co-located profiles extracted from the Met Office global numerical weather prediction (NWP) system. Using NWP background profiles reduces the impact of spatial and temporal co-location errors. The use of NWP output also permits determination of the lowest level at which the atmosphere is sufficiently dry to analyse radio occultation dry temperature retrievals. We demonstrate the advantages of using a new tangent linear version of the dry temperature retrieval algorithm to propagate bending angle departures to dry temperature departures. This reduces the influence of a priori assumptions, compared to a non-linear retrieval. Radiosonde temperature biases which depend on altitude and the solar elevation angle are presented for five carefully chosen upper-air sites and show strong inter-site differences, with biases exceeding 2 K at one of the sites. If implemented in NWP models to correct radiosonde temperature biases prior to assimilation, this method could aid the need for consistent anchor measurements in the assimilation system. The method presented here is therefore relevant to NWP centers and the results will be of interest to the radiosonde community by providing site-specific temperature bias profiles. The new tangent linear version of the linear Abel transform and the hydrostatic integration are described in the interests of the radio occultation community.

Journal

Journal of Applied Meteorology and ClimatologyAmerican Meteorological Society

Published: Mar 20, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial