A New Global Water Vapor Dataset

A New Global Water Vapor Dataset A comprehensive and accurate global water vapor dataset is critical to the adequate understanding of water vapor's role in the earth's climate system. To begin to satisfy this need, the authors have produced a blended dataset made up of global, 5-yr (198892), lx 1 spatial resolution, atmospheric water vapor (WV) and liquid water path products. These new products consist of both the daily total column-integrated composites and a multilayered WV product at three layers (1000700, 700500, 500300 mb). The analyses combine WV retrievals from the Television and Infrared Operational Satellite (TIROS) Operational Vertical Sounder (TOVS), the Special Sensor Microwave/Imager, and radiosonde observations. The global, vertical-layered water vapor dataset was developed by slicing the blended total column water vapor using layer information from TOVS and radiosonde. Also produced was a companion, over oceans only, liquid water path dataset. Satellite observations of liquid water path are growing in importance since many of the global climate models are now either incorporating or contain liquid water as an explicit variable. The complete dataset (all three products) has been named NVAP, an acronym for National Aeronautics and Space Administration Water Vapor Project.This paper provides examples of the new dataset as well as scientific analysis of the observed annual cycle and the interannual variability of water vapor at global, hemispheric, and regional scales. A distinct global annual cycle is shown to be dominated by the Northern Hemisphere observations. Planetary-scale variations are found to relate well to recent independent estimates of tropospheric temperature variations. Maps of regional interannual variability in the 5-yr period show the effect of the 1992 ENSO and other features. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Loading next page...
 
/lp/ams/a-new-global-water-vapor-dataset-yEAaiIwBEf
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(1996)077<1233:ANGWVD>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

A comprehensive and accurate global water vapor dataset is critical to the adequate understanding of water vapor's role in the earth's climate system. To begin to satisfy this need, the authors have produced a blended dataset made up of global, 5-yr (198892), lx 1 spatial resolution, atmospheric water vapor (WV) and liquid water path products. These new products consist of both the daily total column-integrated composites and a multilayered WV product at three layers (1000700, 700500, 500300 mb). The analyses combine WV retrievals from the Television and Infrared Operational Satellite (TIROS) Operational Vertical Sounder (TOVS), the Special Sensor Microwave/Imager, and radiosonde observations. The global, vertical-layered water vapor dataset was developed by slicing the blended total column water vapor using layer information from TOVS and radiosonde. Also produced was a companion, over oceans only, liquid water path dataset. Satellite observations of liquid water path are growing in importance since many of the global climate models are now either incorporating or contain liquid water as an explicit variable. The complete dataset (all three products) has been named NVAP, an acronym for National Aeronautics and Space Administration Water Vapor Project.This paper provides examples of the new dataset as well as scientific analysis of the observed annual cycle and the interannual variability of water vapor at global, hemispheric, and regional scales. A distinct global annual cycle is shown to be dominated by the Northern Hemisphere observations. Planetary-scale variations are found to relate well to recent independent estimates of tropospheric temperature variations. Maps of regional interannual variability in the 5-yr period show the effect of the 1992 ENSO and other features.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Jun 1, 1996

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off