A Midlatitude Influence on Australian Monsoon Bursts

A Midlatitude Influence on Australian Monsoon Bursts AbstractThe initiation of northern Australian monsoon rainfall bursts is accompanied by an increase in cyclonic circulation in the monsoon region. This study shows that the change in circulation at the start of the composite rainfall burst is predominantly influenced by midlatitude frontlike features. By exploiting the relationship between circulation tendency and the convergence of absolute vorticity flux, the circulation changes accompanying the initiation of Australian monsoon bursts is investigated. Moisture flux convergence is found to be proportional to the circulation changes in the monsoon region. Using a composite analysis it is shown that absolute vorticity fluxes through the southern boundary are by far the most important influence on monsoon burst circulation changes, with only one-third of events more closely related to other influences including the Madden–Julian oscillation. This is shown to be true throughout the wet season. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

A Midlatitude Influence on Australian Monsoon Bursts

Loading next page...
 
/lp/ams/a-midlatitude-influence-on-australian-monsoon-bursts-Usxe0wz3eP
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
eISSN
1520-0442
D.O.I.
10.1175/JCLI-D-16-0686.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe initiation of northern Australian monsoon rainfall bursts is accompanied by an increase in cyclonic circulation in the monsoon region. This study shows that the change in circulation at the start of the composite rainfall burst is predominantly influenced by midlatitude frontlike features. By exploiting the relationship between circulation tendency and the convergence of absolute vorticity flux, the circulation changes accompanying the initiation of Australian monsoon bursts is investigated. Moisture flux convergence is found to be proportional to the circulation changes in the monsoon region. Using a composite analysis it is shown that absolute vorticity fluxes through the southern boundary are by far the most important influence on monsoon burst circulation changes, with only one-third of events more closely related to other influences including the Madden–Julian oscillation. This is shown to be true throughout the wet season.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Jul 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial