A Method to Extrapolate the Diffuse Upwelling Radiance Attenuation Coefficient to the Surface as Applied to the Marine Optical Buoy (MOBY)

A Method to Extrapolate the Diffuse Upwelling Radiance Attenuation Coefficient to the Surface as... AbstractThe upwelling radiance attenuation coefficient KLu in the upper 10 m of the water column can be significantly influenced by inelastic scattering processes and thus will vary even with homogeneous water properties. The Marine Optical Buoy (MOBY), the primary vicarious calibration site for many ocean color sensors, makes measurements of the upwelling radiance Lu at 1, 5, and 9 m, and uses these values to determine KLu and to propagate the upwelling radiance directed toward the zenith, Lu, at 1 m to and through the surface. Inelastic scattering causes the KLu derived from the measurements to be an underestimate of the true KLu from 1 m to the surface at wavelengths greater than 575 nm; thus, the derived water-leaving radiance is underestimated at wavelengths longer than 575 nm. A method to correct this KLu, based on a model of the upwelling radiance including Raman scattering and chlorophyll fluorescence, has been developed that corrects this bias. The model has been experimentally validated, and this technique can be applied to the MOBY dataset to provide new, more accurate products at these wavelengths. When applied to a 4-month MOBY deployment, the corrected water-leaving radiance Lw can increase by 5% (600 nm), 10% (650 nm), and 50% (700 nm). This method will be used to provide additional and more accurate products in the MOBY dataset. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Atmospheric and Oceanic Technology American Meteorological Society

A Method to Extrapolate the Diffuse Upwelling Radiance Attenuation Coefficient to the Surface as Applied to the Marine Optical Buoy (MOBY)

Loading next page...
 
/lp/ams/a-method-to-extrapolate-the-diffuse-upwelling-radiance-attenuation-kO7jyhCLlB
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0426
eISSN
1520-0426
D.O.I.
10.1175/JTECH-D-16-0235.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe upwelling radiance attenuation coefficient KLu in the upper 10 m of the water column can be significantly influenced by inelastic scattering processes and thus will vary even with homogeneous water properties. The Marine Optical Buoy (MOBY), the primary vicarious calibration site for many ocean color sensors, makes measurements of the upwelling radiance Lu at 1, 5, and 9 m, and uses these values to determine KLu and to propagate the upwelling radiance directed toward the zenith, Lu, at 1 m to and through the surface. Inelastic scattering causes the KLu derived from the measurements to be an underestimate of the true KLu from 1 m to the surface at wavelengths greater than 575 nm; thus, the derived water-leaving radiance is underestimated at wavelengths longer than 575 nm. A method to correct this KLu, based on a model of the upwelling radiance including Raman scattering and chlorophyll fluorescence, has been developed that corrects this bias. The model has been experimentally validated, and this technique can be applied to the MOBY dataset to provide new, more accurate products at these wavelengths. When applied to a 4-month MOBY deployment, the corrected water-leaving radiance Lw can increase by 5% (600 nm), 10% (650 nm), and 50% (700 nm). This method will be used to provide additional and more accurate products in the MOBY dataset.

Journal

Journal of Atmospheric and Oceanic TechnologyAmerican Meteorological Society

Published: Jul 5, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off