A Mesoscale Model Intercomparison

A Mesoscale Model Intercomparison An intercomparison of four mesoscale numerical prediction models that could lead to the selection of a model for use in the theater of operations by United States Air Force (USAF) meteorological personnel is described. Mesoscale numerical prediction models have matured, and recent advances in computer hardware make this a realizable objective.Two studies were launched to determine if a mesoscale model could be used operationally in theater and to select the model that produced the best forecast under simulated operational conditions. Of prime concern was not whether the model could produce reliable forecasts in data-rich areas, but how well the models operated and thus produced forecasts in data-sparse areas. The first study did an overall review of the available mesoscale numerical weather prediction models resulting in a general ranking of the models by expected forecast ability and operational maturity. At the conclusion of this study it became apparent that a more in-depth analysis was needed to distinguish among the higher-ranking models. Thus, this study was initiated.This study compared four models for quality of forecasts in different climate regions in the world. Two are considered state-of-the-art models that could easily be made operational. These are the Pennsylvania State UniversityNational Center for Atmospheric Research Mesoscale Model 5 (MM5) and the Colorado State University Regional Atmospheric Modeling System (RAMS). The third model was the Navy Operational Regional Prediction System Version 6 (NORAPS6), the navy's operational regional forecast model. The fourth model is the current USAF mesoscale model, the Relocatable Window Model (RWM), that was used to provide a baseline of the current USAF capability.The models were scored by comparing the forecast values with observations. The relative ranking of the models varied with parameter, but overall, the rank order was RAMS, MM5, NORAPS6, and RWTVL The score disparity between the models was not large. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

A Mesoscale Model Intercomparison

Loading next page...
 
/lp/ams/a-mesoscale-model-intercomparison-ejs70F2ai7
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(1998)079<0265:AMMI>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

An intercomparison of four mesoscale numerical prediction models that could lead to the selection of a model for use in the theater of operations by United States Air Force (USAF) meteorological personnel is described. Mesoscale numerical prediction models have matured, and recent advances in computer hardware make this a realizable objective.Two studies were launched to determine if a mesoscale model could be used operationally in theater and to select the model that produced the best forecast under simulated operational conditions. Of prime concern was not whether the model could produce reliable forecasts in data-rich areas, but how well the models operated and thus produced forecasts in data-sparse areas. The first study did an overall review of the available mesoscale numerical weather prediction models resulting in a general ranking of the models by expected forecast ability and operational maturity. At the conclusion of this study it became apparent that a more in-depth analysis was needed to distinguish among the higher-ranking models. Thus, this study was initiated.This study compared four models for quality of forecasts in different climate regions in the world. Two are considered state-of-the-art models that could easily be made operational. These are the Pennsylvania State UniversityNational Center for Atmospheric Research Mesoscale Model 5 (MM5) and the Colorado State University Regional Atmospheric Modeling System (RAMS). The third model was the Navy Operational Regional Prediction System Version 6 (NORAPS6), the navy's operational regional forecast model. The fourth model is the current USAF mesoscale model, the Relocatable Window Model (RWM), that was used to provide a baseline of the current USAF capability.The models were scored by comparing the forecast values with observations. The relative ranking of the models varied with parameter, but overall, the rank order was RAMS, MM5, NORAPS6, and RWTVL The score disparity between the models was not large.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Feb 16, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off