A Mechanism of Mixed Layer Formation in the Indo–Western Pacific Southern Ocean: Preconditioning by an Eddy-Driven Jet-Scale Overturning Circulation

A Mechanism of Mixed Layer Formation in the Indo–Western Pacific Southern Ocean:... AbstractThe formation of a narrow band of the deep winter mixed layer (hereinafter “mixed layer wedge”) in the Indo–western Pacific Southern Ocean is examined using an eddy-resolving Parallel Ocean Program (POP) model simulation. The mixed layer wedge starts to deepen in June, centered at 47.5°S, with a meridional scale of only ~2° latitude. Its center is located ~1° north of the model’s Subantarctic Front (SAF). The Argo-based observed mixed layer is similarly narrow and occurs adjacent to the observed SAF. In the small sector of 130°–142°E, where the SAF is persistent and the mixed layer is deepest, the formation of the narrow mixed layer wedge coincides with destratification underneath the mixed layer. This destratification can be attributed primarily to the downwelling branch of a jet-scale overturning circulation (JSOC). The JSOC, which was reported in an earlier study by the authors, is driven by eddy momentum flux convergence and is therefore thermally indirect: its descending branch occurs on the warmer equatorward flank of the SAF, promoting destratification during the warm season. The model-generated net air–sea heat flux reveals a similar wedge-like feature, indicating that the flux contributes to the mixed layer depth wedge, but again this feature is preconditioned by the JSOC. Ekman advection contributes to the formation of the mixed layer, but it occurs farther north of the region where the mixed layer initially deepens. These findings suggest that the eddy-driven JSOC associated with the SAF plays an important role in initiating the narrow, deep mixed layer wedge that forms north of the SAF. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Physical Oceanography American Meteorological Society

A Mechanism of Mixed Layer Formation in the Indo–Western Pacific Southern Ocean: Preconditioning by an Eddy-Driven Jet-Scale Overturning Circulation

Loading next page...
 
/lp/ams/a-mechanism-of-mixed-layer-formation-in-the-indo-western-pacific-pbScWrqhFR
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0485
D.O.I.
10.1175/JPO-D-17-0006.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe formation of a narrow band of the deep winter mixed layer (hereinafter “mixed layer wedge”) in the Indo–western Pacific Southern Ocean is examined using an eddy-resolving Parallel Ocean Program (POP) model simulation. The mixed layer wedge starts to deepen in June, centered at 47.5°S, with a meridional scale of only ~2° latitude. Its center is located ~1° north of the model’s Subantarctic Front (SAF). The Argo-based observed mixed layer is similarly narrow and occurs adjacent to the observed SAF. In the small sector of 130°–142°E, where the SAF is persistent and the mixed layer is deepest, the formation of the narrow mixed layer wedge coincides with destratification underneath the mixed layer. This destratification can be attributed primarily to the downwelling branch of a jet-scale overturning circulation (JSOC). The JSOC, which was reported in an earlier study by the authors, is driven by eddy momentum flux convergence and is therefore thermally indirect: its descending branch occurs on the warmer equatorward flank of the SAF, promoting destratification during the warm season. The model-generated net air–sea heat flux reveals a similar wedge-like feature, indicating that the flux contributes to the mixed layer depth wedge, but again this feature is preconditioned by the JSOC. Ekman advection contributes to the formation of the mixed layer, but it occurs farther north of the region where the mixed layer initially deepens. These findings suggest that the eddy-driven JSOC associated with the SAF plays an important role in initiating the narrow, deep mixed layer wedge that forms north of the SAF.

Journal

Journal of Physical OceanographyAmerican Meteorological Society

Published: Nov 11, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off