A Long-Term Overshooting Convective Cloud Top Detection Database Over Australia Derived From MTSAT Japanese Advanced Meteorological Imager Observations

A Long-Term Overshooting Convective Cloud Top Detection Database Over Australia Derived From... AbstractA 10-year geostationary (GEO) overshooting cloud top (OT) detection database using Multifunction Transport Satellite (MTSAT) Japanese Advanced Meteorological Imager (JAMI) observations has been developed over the Australian region. GEO satellite imagers collect spatially- and temporally-detailed observations of deep convection, providing insight into the development and evolution of hazardous storms, particularly where surface observations of hazardous storms and deep convection are sparse and ground-based radar or lightning sensor networks are limited. Hazardous storms often produce one or more OTs that indicate the location of strong updrafts where weather hazards are typically concentrated, which can cause substantial impacts on the ground such as hail, damaging winds, tornadoes, and lightning, and to aviation such as turbulence and in-flight icing. The 10-year OT database produced using an automated OT detection algorithm is demonstrated for analysis of storm frequency, diurnally, spatially and seasonally relative to known features such as the Australian monsoon, expected regions of hazardous storms along the southeastern coastal regions of southern Queensland and New South Wales, and the preferential extratropical cyclone track along the Indian Ocean and southern Australian coast. A filter based on atmospheric instability, deep layer wind shear, and freezing level was used to identify OTs that could have produced hail. The filtered OT database is used to generate a hail frequency estimate that identifies a region extending from north of Brisbane to Sydney and the Goldfields - Esperance region of eastern Western Australia as the most hail-prone regions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Meteorology and Climatology American Meteorological Society

A Long-Term Overshooting Convective Cloud Top Detection Database Over Australia Derived From MTSAT Japanese Advanced Meteorological Imager Observations

Loading next page...
 
/lp/ams/a-long-term-overshooting-convective-cloud-top-detection-database-over-fJ0IiQqkhM
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1558-8432
D.O.I.
10.1175/JAMC-D-17-0056.1
Publisher site
See Article on Publisher Site

Abstract

AbstractA 10-year geostationary (GEO) overshooting cloud top (OT) detection database using Multifunction Transport Satellite (MTSAT) Japanese Advanced Meteorological Imager (JAMI) observations has been developed over the Australian region. GEO satellite imagers collect spatially- and temporally-detailed observations of deep convection, providing insight into the development and evolution of hazardous storms, particularly where surface observations of hazardous storms and deep convection are sparse and ground-based radar or lightning sensor networks are limited. Hazardous storms often produce one or more OTs that indicate the location of strong updrafts where weather hazards are typically concentrated, which can cause substantial impacts on the ground such as hail, damaging winds, tornadoes, and lightning, and to aviation such as turbulence and in-flight icing. The 10-year OT database produced using an automated OT detection algorithm is demonstrated for analysis of storm frequency, diurnally, spatially and seasonally relative to known features such as the Australian monsoon, expected regions of hazardous storms along the southeastern coastal regions of southern Queensland and New South Wales, and the preferential extratropical cyclone track along the Indian Ocean and southern Australian coast. A filter based on atmospheric instability, deep layer wind shear, and freezing level was used to identify OTs that could have produced hail. The filtered OT database is used to generate a hail frequency estimate that identifies a region extending from north of Brisbane to Sydney and the Goldfields - Esperance region of eastern Western Australia as the most hail-prone regions.

Journal

Journal of Applied Meteorology and ClimatologyAmerican Meteorological Society

Published: Feb 5, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial