A Joint Probability Density–Based Decomposition of Turbulence in the Atmospheric Boundary Layer

A Joint Probability Density–Based Decomposition of Turbulence in the Atmospheric Boundary Layer AbstractIn convective flows, vertical turbulent fluxes, covariances between vertical velocity and scalar thermodynamic variables, include contributions from local mixing and large-scale coherent motions, such as updrafts and downdrafts. The relative contribution of these motions to the covariance is important in turbulence parameterizations. However, the flux partition is challenging, especially in regions without convective cloud. A method to decompose the vertical flux based on the corresponding joint probability density function (JPD) is introduced. The JPD-based method partitions the full JPD into a joint Gaussian part and the complement, which represent the local mixing and the large-scale coherent motions, respectively. The coherent part can be further divided into updraft and downdraft parts based on the sign of vertical velocity. The flow decomposition is independent of water condensate (cloud) and can be applied in cloud-free convection, the subcloud layer, and stratiform cloud regions. The method is applied to large-eddy simulation model data of three boundary layers. The results are compared with traditional cloud and cloud-core decompositions and a decaying scalar conditional sampling method. The JPD-based method includes a single free parameter and sensitivity tests show weak dependence on the parameter values. The results of the JPD-based method are somewhat similar to the cloud-core and conditional sampling methods. However, differences in the relative magnitude of the flux decomposition terms suggest that an objective definition of the flow regions is subtle and diagnosed flow properties like updraft characteristics depend on the sampling method. Moreover, the flux decomposition depends on the thermodynamic variable and convection characteristics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

A Joint Probability Density–Based Decomposition of Turbulence in the Atmospheric Boundary Layer

Loading next page...
 
/lp/ams/a-joint-probability-density-based-decomposition-of-turbulence-in-the-9RrgysjCt0
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
D.O.I.
10.1175/MWR-D-17-0166.1
Publisher site
See Article on Publisher Site

Abstract

AbstractIn convective flows, vertical turbulent fluxes, covariances between vertical velocity and scalar thermodynamic variables, include contributions from local mixing and large-scale coherent motions, such as updrafts and downdrafts. The relative contribution of these motions to the covariance is important in turbulence parameterizations. However, the flux partition is challenging, especially in regions without convective cloud. A method to decompose the vertical flux based on the corresponding joint probability density function (JPD) is introduced. The JPD-based method partitions the full JPD into a joint Gaussian part and the complement, which represent the local mixing and the large-scale coherent motions, respectively. The coherent part can be further divided into updraft and downdraft parts based on the sign of vertical velocity. The flow decomposition is independent of water condensate (cloud) and can be applied in cloud-free convection, the subcloud layer, and stratiform cloud regions. The method is applied to large-eddy simulation model data of three boundary layers. The results are compared with traditional cloud and cloud-core decompositions and a decaying scalar conditional sampling method. The JPD-based method includes a single free parameter and sensitivity tests show weak dependence on the parameter values. The results of the JPD-based method are somewhat similar to the cloud-core and conditional sampling methods. However, differences in the relative magnitude of the flux decomposition terms suggest that an objective definition of the flow regions is subtle and diagnosed flow properties like updraft characteristics depend on the sampling method. Moreover, the flux decomposition depends on the thermodynamic variable and convection characteristics.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Feb 13, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off