A Global Gridded Dataset of GRACE Drought Severity Index for 2002–14: Comparison with PDSI and SPEI and a Case Study of the Australia Millennium Drought

A Global Gridded Dataset of GRACE Drought Severity Index for 2002–14: Comparison with PDSI and... AbstractA new monthly global drought severity index (DSI) dataset developed from satellite-observed time-variable terrestrial water storage changes from the Gravity Recovery and Climate Experiment (GRACE) is presented. The GRACE-DSI record spans from 2002 to 2014 and will be extended with the ongoing GRACE and scheduled GRACE Follow-On missions. The GRACE-DSI captures major global drought events during the past decade and shows overall favorable spatiotemporal agreement with other commonly used drought metrics, including the Palmer drought severity index (PDSI) and the standardized precipitation evapotranspiration index (SPEI). The assets of the GRACE-DSI are 1) that it is based solely on satellite gravimetric observations and thus provides globally consistent drought monitoring, particularly where sparse ground observations (especially precipitation) constrain the use of traditional model-based monitoring methods; 2) that it has a large footprint (~350 km), so it is suitable for assessing regional- and global-scale drought; and 3) that it is sensitive to the overall terrestrial water storage component of the hydrologic cycle and therefore complements existing drought monitoring datasets by providing information about groundwater storage changes, which affect soil moisture recharge and drought recovery. In Australia, it is demonstrated that combining GRACE-DSI with other satellite environmental datasets improves the characterization of the 2000s “Millennium Drought” at shallow surface and subsurface soil layers. Contrasting vegetation greenness response to surface and underground water supply changes between western and eastern Australia is found, which might indicate that these regions have different relative plant rooting depths. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrometeorology American Meteorological Society

A Global Gridded Dataset of GRACE Drought Severity Index for 2002–14: Comparison with PDSI and SPEI and a Case Study of the Australia Millennium Drought

Loading next page...
 
/lp/ams/a-global-gridded-dataset-of-grace-drought-severity-index-for-2002-14-bUzzkSDpcR
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1525-7541
eISSN
1525-7541
D.O.I.
10.1175/JHM-D-16-0182.1
Publisher site
See Article on Publisher Site

Abstract

AbstractA new monthly global drought severity index (DSI) dataset developed from satellite-observed time-variable terrestrial water storage changes from the Gravity Recovery and Climate Experiment (GRACE) is presented. The GRACE-DSI record spans from 2002 to 2014 and will be extended with the ongoing GRACE and scheduled GRACE Follow-On missions. The GRACE-DSI captures major global drought events during the past decade and shows overall favorable spatiotemporal agreement with other commonly used drought metrics, including the Palmer drought severity index (PDSI) and the standardized precipitation evapotranspiration index (SPEI). The assets of the GRACE-DSI are 1) that it is based solely on satellite gravimetric observations and thus provides globally consistent drought monitoring, particularly where sparse ground observations (especially precipitation) constrain the use of traditional model-based monitoring methods; 2) that it has a large footprint (~350 km), so it is suitable for assessing regional- and global-scale drought; and 3) that it is sensitive to the overall terrestrial water storage component of the hydrologic cycle and therefore complements existing drought monitoring datasets by providing information about groundwater storage changes, which affect soil moisture recharge and drought recovery. In Australia, it is demonstrated that combining GRACE-DSI with other satellite environmental datasets improves the characterization of the 2000s “Millennium Drought” at shallow surface and subsurface soil layers. Contrasting vegetation greenness response to surface and underground water supply changes between western and eastern Australia is found, which might indicate that these regions have different relative plant rooting depths.

Journal

Journal of HydrometeorologyAmerican Meteorological Society

Published: Aug 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off