A Framework for Convection and Boundary Layer Parameterization Derived from Conditional Filtering

A Framework for Convection and Boundary Layer Parameterization Derived from Conditional Filtering AbstractA new theoretical framework is derived for parameterization of subgrid physical processes in atmospheric models; the application to parameterization of convection and boundary layer fluxes is a particular focus. The derivation is based on conditional filtering, which uses a set of quasi-Lagrangian labels to pick out different regions of the fluid, such as convective updrafts and environment, before applying a spatial filter. This results in a set of coupled prognostic equations for the different fluid components, including subfilter-scale flux terms and entrainment/detrainment terms. The framework can accommodate different types of approaches to parameterization, such as local turbulence approaches and mass flux approaches. It provides a natural way to distinguish between local and nonlocal transport processes and makes a clearer conceptual link to schemes based on coherent structures such as convective plumes or thermals than the straightforward application of a filter without the quasi-Lagrangian labels. The framework should facilitate the unification of different approaches to parameterization by highlighting the different approximations made and by helping to ensure that budgets of energy, entropy, and momentum are handled consistently and without double counting. The framework also points to various ways in which traditional parameterizations might be extended, for example, by including additional prognostic variables. One possibility is to allow the large-scale dynamics of all the fluid components to be handled by the dynamical core. This has the potential to improve several aspects of convection–dynamics coupling, such as dynamical memory, the location of compensating subsidence, and the propagation of convection to neighboring grid columns. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

A Framework for Convection and Boundary Layer Parameterization Derived from Conditional Filtering

Loading next page...
 
/lp/ams/a-framework-for-convection-and-boundary-layer-parameterization-derived-Z0LmMfXVkP
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
D.O.I.
10.1175/JAS-D-17-0130.1
Publisher site
See Article on Publisher Site

Abstract

AbstractA new theoretical framework is derived for parameterization of subgrid physical processes in atmospheric models; the application to parameterization of convection and boundary layer fluxes is a particular focus. The derivation is based on conditional filtering, which uses a set of quasi-Lagrangian labels to pick out different regions of the fluid, such as convective updrafts and environment, before applying a spatial filter. This results in a set of coupled prognostic equations for the different fluid components, including subfilter-scale flux terms and entrainment/detrainment terms. The framework can accommodate different types of approaches to parameterization, such as local turbulence approaches and mass flux approaches. It provides a natural way to distinguish between local and nonlocal transport processes and makes a clearer conceptual link to schemes based on coherent structures such as convective plumes or thermals than the straightforward application of a filter without the quasi-Lagrangian labels. The framework should facilitate the unification of different approaches to parameterization by highlighting the different approximations made and by helping to ensure that budgets of energy, entropy, and momentum are handled consistently and without double counting. The framework also points to various ways in which traditional parameterizations might be extended, for example, by including additional prognostic variables. One possibility is to allow the large-scale dynamics of all the fluid components to be handled by the dynamical core. This has the potential to improve several aspects of convection–dynamics coupling, such as dynamical memory, the location of compensating subsidence, and the propagation of convection to neighboring grid columns.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Mar 24, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off