A fluctuation-dissipation relation for the ocean subject to turbulent atmospheric forcing

A fluctuation-dissipation relation for the ocean subject to turbulent atmospheric forcing AbstractWe establish the fluctuation-dissipation relation for a turbulent fluid layer (ocean) subject to frictional forcing by a superposed lighter fluid layer (atmosphere) in local models of air-sea dynamics. The fluctuation-dissipation relation reflects the fact that air-sea interaction not only injects energy in the ocean but also dissipates it. Energy injection and dissipation must therefore be related. The competition between the two processes determines the oceanic energy budget in the idealized dynamics considered here. When applying the fluctuation-dissipation relation to a two-dimensional two-layer Navier-Stokes model with turbulent dynamics, in the atmosphere and the ocean, coupled by a quadratic friction law, the friction parameter is estimated within 8% of the true value, while the estimation of the mass ratio between the atmosphere and the ocean fails, as the forcing time-scale is not faster than the characteristic time-scale of the atmospheric dynamics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Physical Oceanography American Meteorological Society

A fluctuation-dissipation relation for the ocean subject to turbulent atmospheric forcing

Loading next page...
 
/lp/ams/a-fluctuation-dissipation-relation-for-the-ocean-subject-to-turbulent-soh1eP08jH
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0485
D.O.I.
10.1175/JPO-D-17-0097.1
Publisher site
See Article on Publisher Site

Abstract

AbstractWe establish the fluctuation-dissipation relation for a turbulent fluid layer (ocean) subject to frictional forcing by a superposed lighter fluid layer (atmosphere) in local models of air-sea dynamics. The fluctuation-dissipation relation reflects the fact that air-sea interaction not only injects energy in the ocean but also dissipates it. Energy injection and dissipation must therefore be related. The competition between the two processes determines the oceanic energy budget in the idealized dynamics considered here. When applying the fluctuation-dissipation relation to a two-dimensional two-layer Navier-Stokes model with turbulent dynamics, in the atmosphere and the ocean, coupled by a quadratic friction law, the friction parameter is estimated within 8% of the true value, while the estimation of the mass ratio between the atmosphere and the ocean fails, as the forcing time-scale is not faster than the characteristic time-scale of the atmospheric dynamics.

Journal

Journal of Physical OceanographyAmerican Meteorological Society

Published: Feb 15, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial